Tumor resistance is promoted by anti-cancer protein

September 19, 2019

Lack of oxygen, or hypoxia, is a biological stressor that occurs under various conditions such as wound healing and stroke. To rescue the tissue, the body has innate mechanisms that "kick in" to make the cells of the hypoxic tissue more resistant and assist in tissue repair. One such mechanism is the expression of a protein called Hypoxia Induction Factor (HIF), which controls several processes such as glucose uptake, growth of blood vessels and cell proliferation. Despite its beneficial role in some diseases, HIF has also been found to be an important contributor towards cancer progression.

For many years, scientists have been trying to understand why a well-known tumor suppressor protein called p53, is unable to impair the growth of cancer cells in hypoxic areas of solid tumors. Many studies have tried to elucidate the relationship between hypoxia, HIF, and p53, without clear conclusions. Now, a team of scientists led by Dr. Rajan Gogna, of the Champalimaud Centre for the Unknown in Lisbon, Portugal, have identified the source of the tumor's resistance to p53. Their results were published in the scientific journal Nucleic Acid Research.

To investigate this question, the multi-institutional team, which included groups in Portugal, the United States, the United Kingdom, India and Japan, carefully measured and simulated physiological hypoxia in tissue from humans and investigated the molecular changes that were induced in that tissue.

Using this approach, the team uncovered the answer to the longstanding question they were facing: they discovered that lack of oxygen alters the shape of p53, thereby inhibiting its ability to perform its role. "Our analysis showed that when p53 is subjected to hypoxic conditions, this protein changes its conformation and therefore is unable to bind to the DNA of cancer cells", Gogna explains.

This realisation clarified why p53 was not effective under hypoxia, but then, the team made a surprising discovery -- hypoxic cancer cells were in fact producing p53 in large quantities. This unexpected result led the team to investigate further the changes that were happening in the tissue.

Their analysis revealed that the shape p53 assumes under hypoxic conditions actually leads it to bind to HIF and stabilise it, thereby facilitating HIF's pro-survival action in cancer cells. "Not only is p53 unable to suppress the tumor, it actually generates genetic and molecular changes that promote its survival", says Gogna.

According to Gogna, these key findings may have important clinical consequences: "Since hypoxic and non-hypoxic areas will respond differently to chemo and radiotherapy, clinicians might want to measure how much of the tumor is hypoxic and make their therapeutic plan accordingly. In addition, observing the expression of p53 within tumors could potentially indicate how aggressive is the tumor."

Gogna adds that this discovery is an example of a basic research project that yields results with clinical implications. "Understanding this new molecular pathway is important for cancer as well as for other diseases that involve manifestation of chronic hypoxia, which include, among others, chronic inflammatory bowel disease, rheumatoid arthritis, epilepsy and cardiac hypertrophy."

Finally, Gogna concludes by saying that this research has special focus on pancreatic cancer, as "hypoxia-assisted resistance to chemotherapy is one of the most frustrating menaces associated with this disease. This study may help manufacture new anti-cancer drugs that will reduce the resistance caused by this molecular pathway."
Article reference: Esha Madan, Taylor M. Parker, Christopher J. Pelham, Antonio M. Palma, Maria L. Peixoto, Masaki Nagane, Aliya Chandaria, Ana R. Tomas, Rita Canas-Marques, Vanessa Henriques, Antonio Galzerano, Joaquim Cabral-Teixeira, Karuppaiyah Selvendiran, Periannan Kuppusamy, Carlos Carvalho, Antonio Beltran, Eduardo Moreno, Uttam K. Pati and Rajan Gogna. HIF-transcribed p53 chaperones HIF-1. Nucleic Acids Research, 2019. doi: 10.1093/nar/gkz766.

Champalimaud Centre for the Unknown

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.