Nav: Home

Glacial engineering could limit sea-level rise, if we get our emissions under control

September 20, 2018

Targeted engineering projects to hold off glacier melting could slow down the collapse of ice sheets and limit sea-level rise, according to a new study published in the European Geosciences Union journal The Cryosphere. While an intervention similar in size to existing large civil engineering projects could only have a 30% chance of success, a larger project would have better odds of holding off ice-sheet collapse. But study authors Michael Wolovick and John Moore caution that reducing emissions still remains key to stopping climate change and its dramatic effects.

"Doing geoengineering means often considering the unthinkable," says Moore, a scientist at Beijing Normal University, China, and a professor of climate change at the University of Lapland, Finland. The term 'geoengineering' is usually applied to large-scale interventions to combat climate change. But instead of trying to change the entire climate, Wolovick and Moore say we could apply a more targeted approach to limit one of the most drastic consequences of climate change: sea-level rise.

Their "unthinkable" idea is glacial geoengineering: making changes to the geometry of the seafloor near glaciers that flow into the ocean, forming an ice shelf, to prevent them from melting further. Some glaciers, such as the Britain- or Florida-sized Thwaites ice stream in West Antarctica, are retreating fast. "Thwaites could easily trigger a runaway [West Antarctic] ice sheet collapse that would ultimately raise global sea level by about 3 metres," explains Wolovick, a researcher at Princeton University's Department of Geosciences, US. This could have dramatic effects to the millions of people living in the world's coastal areas.

Instead of, or in addition to, limiting the effects of rising seas through traditional coastal protection, using glacier geoengineering to stop the flood at the source could be a viable option, as Wolovick and Moore show. "The most important result [of our study] is that a meaningful ice sheet intervention is broadly within the order of magnitude of plausible human achievements," says Wolovick.

The team looked into two glacial-geoengineering designs. One idea would be to build a wall underwater to block warm water reaching an ice shelf's base, which is very sensitive to melting. A simpler design consists of constructing artificial mounds or columns on the seafloor: they wouldn't block warm water but could support and hold back the glacier, helping it regrow. "In either case, we were imagining very simple structures, simply piles of sand or gravel on the ocean floor," says Wolovick.

The team ran computer models where they applied these designs to Thwaites Glacier in a warming world. Thwaites is projected to be the largest individual source of future sea-level rise and, at 80 to 100 km wide, it's one of the widest glaciers in the world. "If [glacial geoengineering] works there then we would expect it to work on less challenging glaciers as well," the authors write in The Cryosphere study.

The research shows that even the simpler design could slow down the rate of sea-level rise, giving more time to coastal societies to adapt to rising waters. The smallest intervention has a 30% probability of preventing a runaway collapse of the West Antarctic Ice Sheet for the foreseeable future, according to the models. This intervention would consist of building isolated 300-metre-high mounds or columns on the seafloor using between 0.1 and 1.5 cubic kilometres of aggregate, depending on the strength of the material. This is similar to the amount of material that was excavated to build the Suez Canal in Egypt (1 cubic kilometre) or used in Dubai's Palm Islands (0.3 cubic kilometres).

A more sophisticated project, going beyond the scale humanity has attempted so far, would have higher chances of success in avoiding a runaway ice-sheet collapse within the next 1000 years (the time the simulations run for), as well as better odds of causing the ice sheet to regain mass. A small underwater wall blocking about 50% of warm water from reaching the ice shelf base could have 70% chance of succeeding, while larger walls would be even more likely to delay or even stop ice-sheet collapse.

Despite the encouraging results, the scientists say they don't advocate starting these ambitious projects any time soon. While the simplest design would be similar in scale to existing engineering projects, it would be built in one of Earth's harshest environments. So, the engineering details still need to be worked out. Nonetheless, the team wanted to see whether glacial geoengineering could work in theory, and wanted to get the scientific community to think about, and improve on, the designs.

"We all understand that we have an urgent professional obligation to determine how much sea level rise society should expect, and how fast that sea level rise is likely to come. However, we would argue that there is also an obligation to try to come up with ways that society could protect itself against a rapid ice-sheet collapse," says Wolovick.

Ice physics shows glacial geoengineering could work to hold off ice-sheet collapse, but both Wolovick and Moore are adamant that reducing greenhouse-gas emissions remains a priority in the fight against climate change. "There are dishonest elements of society that will try to use our research to argue against the necessity of emissions' reductions. Our research does not in any way support that interpretation," they say.

Engineering glaciers would only limit sea-level rise, while reducing emissions could also limit other harmful consequences of climate change, such as ocean acidification, floods, droughts and heat waves. In addition, the team points out that more warming would mean glacial engineering projects would become less feasible and would have lower chances of success. After all, their underwater structures might protect the bottom of the ice shelves, but wouldn't prevent warm air from eating away the ice at the top.

"The more carbon we emit, the less likely it becomes that the ice sheets will survive in the long term at anything close to their present volume," Wolovick concludes.
-end-
Please mention the name of the publication (The Cryosphere) if reporting on this story and, if reporting online, include a link to the paper (https://www.the-cryosphere.net/12/2955/2018) or to the journal website (https://www.the-cryosphere.net).

European Geosciences Union

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.