Nav: Home

Simpler and safer method for handling a useful but foul-smelling gas in chemical synthesis

September 20, 2018

The chemical element sulfur is an important constituent in many pharmaceuticals and, consequently, it is desirable to be able to introduce sulfur-containing fragments efficiently in a broad range of chemical compounds. The Skrydstrup team provides an effective and safe way for introducing a small sulfur building block, which is generally difficult to work with, being a gas and with an extremely repulsive odor. Especially interesting in this work is that a gold-based catalyst is exploited for these specific reactions involving carbon-carbon double bonds.

The research group focused on the use of the smallest carbon-containing thiol, namely methanethiol (MeSH). However, not only is MeSH the main compound responsible for bad breath and the smell of flatus, it is also highly flammable and therefore unsafe to work with in the laboratory. In the present study, researchers from iNANO and the Department of Chemistry, Aarhus University, report on how they successfully exploit their own invention, the two-chamber system, in order to avoid handling pressure cylinders with MeSH, and having to add the gas directly to the chemical reactions. The authors also demonstrate that a crystalline organic compound can be used to liberate an exact amount of MeSH upon activation in the two-chamber system.

In this work, the direct use of MeSH has been circumvented and a protocol for the delivery and use of a stoichiometric amount of gaseous MeSH has been developed without the need of pressure cylinders. The Skrydstrup group has demonstrated by the ex-situ generation of MeSH from a simple crystalline precursor in the two-chamber reactor that a gold(I)-mediated hydrothiolation of terminal alkenes is possible to provide the corresponding methyl sulfide in high yields. The reaction promoted by a gold(I) complex is also interesting as these complexes appear to operate as radical initiators from the mechanistic investigation undertaken.
-end-
The research has been carried out by scientists from Interdisciplinary Nanoscience Centre (iNANO) and Department of Chemistry at Aarhus University (AU) in collaboration with Haldor Topsøe A/S. Professor Troels Skrydstrup has been in charge of the research team behind the study.

The work was generously supported by BIOVALUE SPIR (Strategic Platform for Innovation and Research), the Danish National Research Foundation, Innovation Fund Denmark, Haldor Topsøe and Aarhus University.

The scientific article has been published in the international journal Angewandte Chemie Int. Ed.:

"Ex Situ Formation of Methanethiol: Application in the Gold(I)?Promoted anti?Markovnikov Hydrothiolation of Olefins"
Steffan K. Kristensen, Simon L. R. Laursen, Esben Taarning and Troels Skrydstrup

https://doi.org/10.1002/anie.201809051

For further information, contact

Professor Troels Skrydstrup
Interdisciplinary Nanoscience Center
Department of Chemistry
Aarhus University
Denmark
Email: ts@chem.au.dk
Phone: 45-87-15-59-68

Aarhus University

Related Chemical Reactions Articles:

Quantum entanglement in chemical reactions? Now there's a way to find out
For the first time, scientists have developed a practical way to measure quantum entanglement in chemical reactions.
Driving chemical reactions with light
How can chemical reactions be triggered by light, following the example of photosynthesis in nature?
BridgIT, a new tool for orphan and novel enzyme reactions
Chemical engineers at EPFL have developed an online tool that can accurately assign genes and proteins to unknown 'orphan' reactions, which are a major headache for biotechnology, drug development, and even medicine.
Boosting solid state chemical reactions
Adding olefin enables efficient solvent-free cross-coupling reactions, leading to environmentally friendly syntheses of a wide range of organic materials.
Researchers monitor electron behavior during chemical reactions for the first time
In a recent publication in Science, researchers at the University of Paderborn and the Fritz Haber Institute Berlin demonstrated their ability to observe electrons' movements during a chemical reaction.
More Chemical Reactions News and Chemical Reactions Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...