Nav: Home

Coastal wetlands will survive rising seas, but only if we let them

September 20, 2018

When Florence slogged ashore in North Carolina last week, coastal wetlands offered one of the best lines of defense against the hurricane's waves and surge.

A new study predicts such wetlands will survive rising seas to buffer the world's coastlines against future storms and provide their many other ecological and economic benefits, but only if humans preserve the room needed for the wetlands to migrate inland--what scientists call "accommodation space."

The study, published in Nature the day before Florence made landfall, addressed a major uncertainty in how saltmarshes and mangroves will respond to sea-level rise. It was authored by an international research team with members in the U.K., U.S., Belgium, Germany, and Australia. Dr. Matt Kirwan of William & Mary's Virginia Institute of Marine Science was the sole U.S.-based contributor.

The study's lead author, Dr. Mark Schuerch of the U.K.-based University of Lincoln, says "Rather than being an inevitable consequence of global rising sea levels, our findings indicate that large-scale coastal wetland loss might be avoidable if sufficient additional space can be created by increasing the number of innovative 'nature-based adaptation' solutions to coastal management."

Adds Kirwan, "Whether coastal wetlands get bigger or smaller in the future depends on how much dry land is lost to sea-level rise, and how fast wetlands move into that submerged land."

A novel modeling approach

The study was motivated by a history of conflicting predictions concerning the fate of coastal wetlands in a warming world.

Says Schuerch, "Recent global assessments have suggested that sea-level rise has already overwhelmed the ability of many marshes and mangroves to build up vertically, leading to widespread loss of coastal wetlands, while field measurements and localized models of salt-marsh accretion show that most large-scale assessments have overestimated wetland vulnerability."

Kirwan's previous work helps explain these discrepancies, and played a key role in motivating the current study. He says "Global predictions of marsh loss appear alarming, but they stem from simple models that don't simulate the dynamic feedbacks that allow marsh soils to build faster as marshes become more flooded." That dynamic, says Kirwan, "will allow marshes to adapt not only to present rates of sea-level rise but the accelerated rates predicted for coming decades."

In their Nature study, the researchers integrated the previously independent approaches, using a novel modelling method that combined global simulations of sea-level rise, population growth, and other factors with localized measurements and simulations of saltmarsh accretion. The model was based on elevation profiles for 12,148 coastline segments worldwide.

Their results counter previous estimates of global coastal-wetland loss--up to 90% in some studies--instead predicting that wetland area could actually increase as sea level rises. Indeed, the researchers estimate gains of up to 60% in coastal wetland acreage, but with two important caveats--the capacity for marshes to migrate inland sans dikes or seawalls, and no decrease in sediment supply.

According to the authors, "Our simulations suggest that global wetland resilience is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone."

A key threshold

The researchers used human population density to gauge the likelihood that a coastal area is protected by the kind of infrastructure that would block wetland migration, and found a key threshold at 20 people per square kilometer. Building coastal-protection measures in areas with lower population densities will lead to global marsh loss, while reserving coastal-protection measures for areas with higher densities will lead to marsh gain. The 20-person threshold applies under all tested scenarios of sea-level rise and population growth out to the year 2100.

Explains Kirwan, "If dikes are built to protect areas with lower population densities, say 5 people per square kilometer, then much of the coast will be diked and marshes will have nowhere to go." Under such a scenario, the Nature study shows a 30% loss of coastal wetlands as seas rise to the highest projected 2100 levels. The study's most optimistic, 60% prediction of wetland gain occurs under a much greater, 300-person-km2 threshold scenario, essentially allowing coastal wetlands to migrate inland unimpeded until they are lapping at urban shores. A simulation at the 20-person threshold predicts a global wetland gain of 37%.

In an interesting twist, the 20-person threshold happens to be the current global average population density above which coastal communities are protected by some kind of infrastructure. Thus, for coastal wetlands to expand in the face of projected increases in both sea-level rise and human population, accommodation space must be not only preserved but expanded.

A growing movement would expand accommodation space through the use of what scientists call "natural and nature-based features" for coastal resilience. Schuerch says replacing dikes and other traditional coastal flood defenses with these "NNBFs" would "enable coastal wetlands to migrate inland through.. nature reserve buffers in upland areas surrounding coastal wetlands. If these are strategically scaled up they could help coastal wetlands adapt to rising sea levels and protect rapidly increasing global coastal populations."

Implications for the U.S.

Kirwan stresses that the Nature study reveals several important differences between coastal wetlands and their projected fates in different parts of the world.

"In China and many European countries," he says, "many marshes are bordered by dikes, while in the U.S., they're generally bordered by forests." Thus Eurasian marshes already suffer from a lack of accommodation space, while Kirwan's research team has seen ample local evidence of landward saltmarsh migration including the appearance of "ghost forests."

"We've seen widespread conversion of forests to marshes here in the U.S. already," says Kirwan, "and millions of acres of low elevation, rural land will convert to wetlands in the future in places like Chesapeake Bay and the Gulf Coast."

Kirwan notes the Nature study also predicts that regional differences in the fate of saltmarshes will be influenced by differences in sediment availability, helping to explain what at first might seem a paradox.

"Our modeling suggests that many European saltmarshes will survive sea-level rise despite a lack of accommodation space for inland migration, because there is enough sediment to allow the marshes to grow vertically," says Kirwan. "In the U.S., many rivers supply insufficient sediment for marshes to grow vertically, so those marshes will have to migrate inland to survive sea-level rise."
-end-


Virginia Institute of Marine Science

Related Wetlands Articles:

Whooping cranes form larger flocks as wetlands are lost -- and it may put them at risk
Over the past few decades, the endangered whooping crane (Grus Americana) has experienced considerable recovery.
Satellite image data reveals rapid decline of China's intertidal wetlands
Researchers from the school of Geographical Sciences at Guangzhou University have revealed the stark decline of China's intertidal wetlands by studying archives of satellite imaging data.
Biodiversity has substantially changed in one of the largest Mediterranean wetlands
The Camargue area in France has considerably fewer grasshopper, cricket, locust, dragonfly, and amphibian species than 40 years ago.
Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.
Microbe from New Jersey wetlands chomps PFAS
Per- and polyfluoroalkyl substances (PFAS) are building up in the environment, and scientists are becoming concerned.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Using the past to unravel the future for Arctic wetlands
A new study has used partially fossilised plants and single-celled organisms to investigate the effects of climate change on the Canadian High Arctic wetlands and help predict their future.
UC researchers find ancient Maya farms in Mexican wetlands
Archaeologists with the University of Cincinnati used the latest technology to find evidence suggesting ancient Maya people grew surplus crops to support an active trade with neighbors up and down the Yucatan Peninsula.
As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.
New York City area wetlands may be unwitting generator of greenhouse gasses
A new study from researchers at The Graduate Center of The City University of New York suggests that New York City-area wetlands are capable of using CSO inputs in a manner that actually increases greenhouse gas emissions such as carbon dioxide and methane.
More Wetlands News and Wetlands Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.