Dengue virus becoming resistant to vaccines and therapeutics due to mutations in specific protein

September 20, 2019

Dengue virus (DENV) infects about 400 million people annually around the world, with a high prevalence in tropical and sub-tropical regions. The virus causes diseases ranging from mild dengue fever to severe dengue haemorrhagic fever and dengue shock syndrome.

DENV2 exists as smooth spherical surface particles while growing at the mosquito's physiological temperature (29 degrees Celsius). It then changes to bumpy surfaced particles at human physiological temperature (37 degrees Celsius). This ability to morph helps the virus to evade the immune system of the human host. Hence, understanding the mechanism behind this is important for therapeutics and vaccine development.

"Together with Professor Pei-Yong Shi from UTMB, we found that in laboratory developed DENV2 strains, mutations in the virus' E protein causes its transformation into bumpy particles. These structural changes can cause vaccines and therapeutics to be ineffective against the virus," said Ms Xin-Ni Lim, the study's lead author who is from Duke-NUS' Emerging Infectious Diseases (EID) Programme.

The team also tested four DENV2 strains obtained from patients. They observed that in contrast to the laboratory adapted viruses, the majority of these clinical strains maintained smooth surface structure at 37 degrees Celsius. However, at 40 degrees Celsius, the temperature of a fever, all virus strains took on a bumpy surface.

"Our study gives a new direction to vaccine development and treatment for dengue disease. For prevention of disease through vaccines that are administered to the patient before dengue infection, we should use those that are effective against the smooth surface virus. When it comes to patients displaying fever symptoms, treatment strategies effective against the bumpy surface particles should be implemented," said Dr Sheemei Lok, Professor, Duke-NUS' EID and corresponding author of this study.

"This study is a first step towards gaining more insight into how DENV2 reacts and adapts to the host's immunological defenses. We were also able to use computational modelling approaches to predict why particles from different DENV2 strains are more or less adept at morphing from the smooth to bumpy structures. By better understanding the interactions between the virus and the host, we will be able to develop better therapies and vaccines to treat or prevent infections, and contribute to public health outcomes," said Dr Peter Bond, Principal Investigator from A*STAR's BII.

The study's findings also show that the lab adapted DENV2 may not be a good model for research, as its structure is different from the clinical strains isolated from patients. The team is planning to study the other DENV serotypes to find out if there are any other possible structural changes.
-end-


Duke-NUS Medical School

Related Vaccines Articles from Brightsurf:

Safety of HPV vaccines in males
A new analysis published in the British Journal of Clinical Pharmacology shows that HPV vaccines are safe and well tolerated in the male population, and the side effects that may occur after immunization are similar in both sexes.

Model could improve design of vaccines, immunotherapies
Researchers have discovered a general property for understanding how immune cell receptors sense and respond to microbial signals, which could lead to more effective vaccines for both existing and novel viruses.

Better vaccines are in our blood
Red blood cells don't just shuttle oxygen from our lungs to our organs: they also help the body fight off infections by capturing pathogens in the blood and presenting them to immune cells in the spleen.

Challenges in evaluating SARS-CoV-2 vaccines
With more than 140 SARS-CoV-2 vaccines in development, the race is on for a successful candidate to help prevent COVID-19.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

Misinformation on vaccines readily available online
Parents researching childhood vaccinations online are likely to encounter significant levels of negative information, researchers at the University of Otago, Wellington, have found.

Battle with the cancer: New avenues from childhood vaccines
A new research from the University of Helsinki showed for the first time how the pre-immunization acquired through common childhood vaccines can be used to enhance therapeutic cancer treatment.

Personalized cancer vaccines
The only therapeutic cancer vaccine available on the market has so far showed very limited efficacy in clinical trials.

Doubts raised about effectiveness of HPV vaccines
A new analysis of the clinical trials of HPV vaccines to prevent cervical cancer raises doubts about the vaccines' effectiveness.

Egg-based flu vaccines: Not all they're cracked up to be?
Flu season is underway in the Northern Hemisphere, sickening millions of people and in rare cases, causing hospitalization or death.

Read More: Vaccines News and Vaccines Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.