Nav: Home

Why is the brain disturbed by harsh sounds?

September 20, 2019

Why do the harsh sounds emitted by alarms or human shrieks grab our attention? What is going on in the brain when it detects these frequencies? Neuroscientists from the University of Geneva (UNIGE) and Geneva University Hospitals (HUG), Switzerland, have been analysing how people react when they listen to a range of different sounds, the aim being to establish the extent to which repetitive sound frequencies are considered unpleasant. The scientists also studied the areas inside the brain that were stimulated when listening to these frequencies. Surprisingly, their results - which are published in Nature Communications - showed not only that the conventional sound-processing circuit is activated but also that the cortical and sub-cortical areas involved in the processing of salience and aversion are also solicited. This is a first, and it explains why the brain goes into a state of alert on hearing this type of sound.

Alarm sounds, whether artificial (such as a car horn) or natural (human screams), are characterised by repetitive sound fluctuations, which are usually situated in frequencies of between 40 and 80 Hz. But why were these frequencies selected to signal danger? And what happens in the brain to hold our attention to such an extent? Researchers from UNIGE and HUG played repetitive sounds of between 0 and 250 Hz to 16 participants closer and closer together in order to define the frequencies that the brain finds unbearable. "We then asked participants when they perceived the sounds as being rough (distinct from each other) and when they perceived them as smooth (forming one continuous and single sound)," explains Luc Arnal, a researcher in the Department of Basic Neurosciences in UNIGE's Faculty of Medicine.

Based on the responses of participants, the scientists were able to establish that the upper limit of sound roughness is around 130 Hz. "Above this limit," continues Arnal, "the frequencies are heard as forming only one continuous sound." But why does the brain judge rough sounds to be unpleasant? In an attempt to answer this question, the neuroscientists asked participants to listen to different frequencies, which they had to classify on a scale of 1 to 5, 1 being bearable and 5 unbearable. "The sounds considered intolerable were mainly between 40 and 80 Hz, i.e. in the range of frequencies used by alarms and human screams, including those of a baby," says Arnal. Since these sounds are perceptible from a distance, unlike a visual stimulus, it is crucial that attention can be captured from a survival perspective. "That's why alarms use these rapid repetitive frequencies to maximise the chances that they are detected and gain our attention," says the researcher. In fact, when the repetitions are spaced less than about 25 milliseconds apart, the brain cannot anticipate them and therefore suppress them. It is constantly on alert and attentive to the stimulus.

Harsh sounds fall outside the conventional auditory system

The researchers then attempted to find out what actually happens in the brain: why are these harsh sounds so unbearable? "We used an intracranial EEG, which records brain activity inside the brain itself in response to sounds," explains Pierre Mégevand, a neurologist and researcher in the Department of Basic Neurosciences in the UNIGE Faculty of Medicine and at HUG.

When the sound is perceived as continuous (above 130 Hz), the auditory cortex in the upper temporal lobe is activated. "This is the conventional circuit for hearing," says Mégevand. But when sounds are perceived as harsh (especially between 40 and 80 Hz), they induce a persistent response that additionally recruits a large number of cortical and sub-cortical regions that are not part of the conventional auditory system. "These sounds solicit the amygdala, hippocampus and insula in particular, all areas related to salience, aversion and pain. This explains why participants experienced them as being unbearable," says Arnal, who was surprised to learn that these regions were involved in processing sounds.

This is the first time that sounds between 40 and 80 Hz have been shown to mobilise these neural networks, although the frequencies have been used for a long time in alarm systems. "We now understand at last why the brain can't ignore these sounds," says Arnal. "Something particular happens at these frequencies, and there are also many illnesses that show atypical brain responses to sounds at 40 Hz. These include Alzheimer's, autism and schizophrenia." The neuroscientists will now investigate the networks stimulated by these frequencies to see whether it could be possible to detect these illnesses early by soliciting the circuit activated by the sounds.
-end-


Université de Genève

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...