Nav: Home

New method for the measurement of nano-structured light fields

September 20, 2019

Structured laser light has already opened up various different applications: it allows for precise material machining, trapping, manipulating or defined movement of small particles or cell compartments, as well as increasing the bandwidth for next-generation intelligent computing.

If these light structures are tightly focused by a lens, like a magnifying glass used as burning glass, highly intense three-dimensional light landscapes will be shaped, facilitating a significantly enhanced resolution in named applications. These kinds of light landscapes has paved the way to pioneering applications as Nobel prize awarded STED microscopy.

However, these nano-fields itself could not be measured yet, since components are formed by tight focusing which are invisible for typical measurement techniques. Up to now, this lack of appropriate metrological methods has impeded the breakthrough of nano-structured light landscapes as a tool for material machining, optical tweezers, or high-resolution imaging.

A team around physicist Prof. Dr. Cornelia Denz of the Institute of Applied Physics and chemist Prof. Dr. Bart Jan Ravoo of the Center for Soft Nanoscience at the University of Münster (Germany) successfully developed a nano-tomographic technique which is able to detect the typically invisible properties of nano-structured fields in the focus of a lens - without requiring any complex analysis algorithms or data post-processing. For this purpose, the team combined their knowledge in the field of nano-optics and organic chemistry to realize an approach based on a monolayer of organic molecules. This monolayer is placed in the focused light field and replies to this illumination by fluorescence, embedding all information about the invisible properties.

By the detection of this reply the distinct identification of the nano-field by a single, fast and straightforward camera image is enabled. "This approach finally opens the till now unexploited potential of these nano-structured light landscapes for many more applications," says Cornelia Denz, who is heading the study. The study has been published in the journal "Nature Communications".
-end-
Original publication: E. Otte et al. (2019): Polarization nano-tomography of tightly focused light landscapes by self-assembled monolayers. Nature Communications; DOI: 10.1038/s41467-019-12127-3

University of Münster

Related Organic Chemistry Articles:

Green chemistry of fullerene: Scientists invented an environmentally friendly way to realize organic
Scientists from the Skoltech Center for Energy Science and Technology (CEST) and the Institute for Problems of Chemical Physics of Russian Academy of Sciences have developed a novel approach for preparing thin semiconductor fullerene films.
Let there be light: Synthesizing organic compounds
The appeal of developing improved drugs to promote helpful reactions or prevent harmful ones has driven organic chemists to better understand how to synthetically create these molecules and reactions in the laboratory.
Metal-organic framework nanoribbons
The nanostructure of metal-organic frameworks (MOFs) plays an important role in various applications since different nanostructures usually exhibit different properties and functions.
Next step in producing magnetic organic molecules
A team from the Ruhr Explores Solvation Cluster of Excellence at Ruhr-Universität Bochum has created new molecules with magnetic properties.
Verifying 'organic' foods
Organic foods are increasingly popular -- and pricey. Organic fruits and vegetables are grown without synthetic pesticides, and because of that, they are often perceived to be more healthful than those grown with these substances.
Water creates traps in organic electronics
Poor-quality organic semiconductors can become high-quality semiconductors when manufactured in the correct way.
Organic semiconductors: One transistor for all purposes
In mobiles, fridges, planes - transistors are everywhere. But they often operate only within a restricted current range.
Three ways studying organic chemistry changes the brain
A new study from Carnegie Mellon University researchers using multiple imaging modalities shows that learning scientific information results in changes in the actual structure of memory-related areas of the brain, changes due to the encoding of the new information in these memory-related brain areas, and changes in the coordination among the network nodes that jointly contain the new information.
Breakthrough in organic electronics
Researchers from Chalmers University of Technology, Sweden, have discovered a simple new tweak that could double the efficiency of organic electronics.
Organic food worse for the climate
Organically farmed food has a bigger climate impact than conventionally farmed food, due to the greater areas of land required.
More Organic Chemistry News and Organic Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.