Leukemia drug shows promise for treating a childhood brain cancer

September 20, 2019

A drug used to treat chronic myeloid leukemia appears to be more effective at stopping a type of medulloblastoma in mouse models than existing treatments for the deadly pediatric brain tumor, reports a multi-institutional team led by researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences at University of California San Diego.

In the study, published September 20, 2019 in PLOS One, the team demonstrated how use of a single drug -- in this case nilotinib -- specifically targets cancer cells that have an abnormal activation of a cell communication system, called the Hedgehog pathway, via two different mechanisms, making it more effective and less toxic than combining drugs.

"We discovered a previously unknown activity of nilotinib that may be leveraged to treat a large fraction of cases of medulloblastoma, a type of childhood brain cancer," said senior author Ruben Abagyan, PhD, professor in the Skaggs School of Pharmacy. "While more research is needed, this pharmaceutical could potentially be used for several cancer types with an overactive cell-signaling pathway."

Several types of basal cell carcinoma, myeloid leukemia, rhabdomyosarcoma, pancreatic adenocarcinoma, glioblastoma and one third of medulloblastoma cases have an impairment in the Hedgehog signaling pathway -- a key cellular system that regulates embryonic development and adult tissue regeneration. As a result of this impairment, the cancer cells overproduce a cell-surface receptor called Smoothened. Malignancies with this abnormality account for a quarter of all cancer deaths, said Abagyan.

"Only a fraction of patients with this subtype of medulloblastoma respond well to current therapies that only target Smoothened," said Abagyan. "Knowing that dysregulation of the Hedgehog pathway is important to the maintenance of cancer stem cells, and that it plays a critical role in several cancers, we wanted to find a single drug that inhibits this pathway in addition to several other essential anti-cancer activities."

In the study, Abagyan and team discovered that mice bearing human medulloblastoma tumors saw tumor growth reduced and no drug resistance occurring. Nilotinib simultaneously inhibits Smoothened and several protein kinases critical for tumor growth.

Nilotinib is already a U.S. Food and Drug Administration approved therapy for chronic myeloid leukemia with a safety profile, making it a good therapeutic candidate alone or in combination with surgery, radiation therapy and chemotherapy, wrote the authors.
-end-
This project was a collaboration between several research labs including Clark C. Chen, MD, PhD, previously of UC San Diego Moores Cancer Center and now at University of Minnesota Medical School.

Co-authors include: Kirti K. Chahal and Irina Kufareva, UC San Diego; Jie Li, University of Minnesota; Milind Parle, Guru Jambheshwar University of Science and Technology; Donald L. Durden, UC San Diego and Rady Children's Hospital-San Diego; and Robert J. Wechsler-Reya, Sanford Burnham Prebys Medical Discovery Institute.

Disclosure: Abagyan is co-founder and has an equity interest in Molsoft LLC.

University of California - San Diego

Related Medulloblastoma Articles from Brightsurf:

Cerebrospinal fluid as liquid biopsy for characterizing & policing of medulloblastoma
Building on previous research led by Joan Seoane, Director of Translational Research at the Vall d'Hebron Institute of Oncology (VHIO) and ICREA Research Professor, latest findings from a proof-of-concept study published in Nature Communications, show that the analysis of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA), allows for the more precise characterization, molecular diagnosis (including subtyping and risk stratification), and real time tracking of medulloblastoma (MB) - the most prevalent malignant brain tumor in childhood.

Researchers find potential to make brain cancers in children respond better to treatment
Research has identified a small molecule compound that can activate the Wnt pathway in non-Wnt subtypes of medulloblastoma, making these aggressive forms of cancer more responsive to therapies.

A promising new treatment for recurrent pediatric brain cancer
Researchers developed a novel approach that delivers appropriately-targeted chimeric antigen receptor (CAR) T cell therapy directly into the cerebrospinal fluid that surrounds recurrent pediatric brain tumors.

Inherited mutation can predispose children to a type of brain tumor
Collaboration co-led by researchers at St. Jude Children's Research Hospital discovers a novel predisposition gene in pediatric medulloblastoma.

Understanding brain tumors in children
The causes of 40% of all cases of certain medulloblastomas -- dangerous brain tumors affecting children -- are hereditary.

Targeting a transporter to treat SHH medulloblastoma
Scientists at St. Jude Children's Research Hospital have identified a novel target for a type of pediatric brain tumor.

Researchers identify novel potential combination therapy for childhood brain tumors
Brazilian researchers working in collaboration with Canadian scientists demonstrated that all medulloblastoma tumor subtypes express two stem cell markers: BMI1 and CD133.

Researchers identify possible approach to block medulloblastoma growth
University of North Carolina Lineberger Comprehensive Cancer Center researchers have identified a potential approach to stop the growth of the most common type of brain tumor in children.

Leukemia drug shows promise for treating a childhood brain cancer
Skaggs School of Pharmacy and Pharmaceutical Sciences at University of California San Diego researchers describe new use of leukemia drug, nilotinib, to treat subtype of medulloblastoma, a deadly pediatric brain cancer.

Cracking the code of a brain cancer that keeps coming back
Researchers used a powerful new computer-assisted technology called single-cell transcriptomics that measures thousands of individual cells simultaneously to map cell types and molecular cascades that drive the growth of SHH-medulloblastoma.

Read More: Medulloblastoma News and Medulloblastoma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.