Jefferson radiation oncologists use real-time system to plant 'seeds' against cancer

September 21, 2007

(PHILADELPHIA) Radiation oncologists and urologists at the Kimmel Cancer Center at Jefferson and Thomas Jefferson University Hospital in Philadelphia have begun using a real-time system to implant radiation-emitting seeds in prostate cancer patients. While the system, which is made by Nucletron, a technology company based in The Netherlands, is only being used for imaging and planning purposes so far, it ultimately will help with the actual placement of the seeds. To date, Jefferson is the first medical center in the Delaware Valley to begin employing the new system.

The multidisciplinary team of urologists, surgeons, radiation oncologists, radiation physicists and others involved in using the device are hoping that the new federal Food and Drug Administration-approved technology will make an already good system even better, adding scientific precision to a treatment that currently relies mainly on physician experience and skill.

"The device is a step above the traditional technique because it makes use of a more sophisticated approach that allows for a coordinated, real-time imaging-based implantation of seeds," Richard Valicenti, M.D., associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University, says about the Nucletron device.

Patients have two options for treatment for localized, low-risk prostate cancer confined to the prostate: surgery or radiation therapy. In brachytherapy, tiny pellets - seeds - about the size of a grain of rice blanket the prostate, giving off radiation that travels only a few millimeters to kill nearby cancer cells. The seeds are carefully placed inside the cancerous tissue and positioned to efficiently attack the cancer. Brachytherapy has been proven to be very effective and safe, providing a good alternative to surgical removal of the prostate, while reducing the risk of certain long-term side effects, such as impotence. The seed radioactivity decays with time, while the seeds stay within the treatment area.

"This new approach is automated, so what normally takes us many steps to do we can do very quickly," he says, noting that brachytherapy is highly operator-dependent. "For example, putting in the rectal ultrasound probe has to be done slowly by hand. Now, the device does it and takes measurements of the size and location automatically of the target gland." It collects the imaging information - the dimensions of the patient's prostate - and downloads this into a computer system, where it is rapidly processed.

The doctors, radiation physicists and other specialists then specify the parameters of treating the cancer, such as how much dose to give the prostate, how much extra dose to give to the area of the tumor and the positions in which to give the radiation, all in less time than previously possible with standard techniques, Dr. Valicenti says.

"Up until recently, we would produce a plan in the outpatient setting that we hoped to recapitulate in the operating room," explains Adam Dicker, M.D. Ph.D., professor of radiation oncology at Jefferson Medical College. "But there was always the concern that what we saw initially might not match the situation later." Planning, he explains, can be affected by the patient's position and the location - and condition - of his prostate. Because the device enables real-time planning in the operating room, he says, "If an area is under-dosed, you can find out right away and make corrections." The system provides a multidimensional view of the prostate and the "ability to process and accumulate more precise information, constantly updating and readjusting the treatment plan."
-end-


Thomas Jefferson University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.