UC San Diego biologists discover genes that repair nerves after injury

September 21, 2011

Biologists at the University of California, San Diego have identified more than 70 genes that play a role in regenerating nerves after injury, providing biomedical researchers with a valuable set of genetic leads for use in developing therapies to repair spinal cord injuries and other common kinds of nerve damage such as stroke.

In the September 22 issue of the journal Neuron, the scientists detail their discoveries after an exhaustive two-year investigation of 654 genes suspected to be involved in regulating the growth of axons--the thread-like extensions of nerve cells that transmit electrical impulses to other nerve cells. From their large-scale genetic screen, the researchers identified 70 genes that promote axon growth after injury and six more genes that repress the re-growth of axons.

"We don't know much about how axons re-grow after they're damaged," said Andrew Chisholm, a professor of biology at UC San Diego. "When you have an injury to your spinal cord or you have a stroke you cause a lot of damage to your axons. And in your brain or spinal cord, regeneration is very inefficient. That's why spinal cord injuries are basically untreatable."

Chisholm and UC San Diego biology professor and HHMI Investigator Yishi Jin headed the collaborative research team, which also included researchers from the University of Oregon.

While scientists in recent decades have gained a good understanding of how nerve cells, or neurons, develop their connections in the developing embryo, much less is known about how adult animals and humans repair--or fail to repair--those connections when axons are damaged.

"There are many processes not involved in early development that are involved in switching the neurons to this re-growth mode," said Chisholm. "In essence what we found are genes that people had not suspected previously to be part of this process."

Of particular interest to the UC San Diego biologists are the six genes that appear to repress the growth of axons.

"The discovery of these inhibitors is probably the most exciting finding," said Chisholm, because identifying and eliminating the inhibiting factors to the re-growth of axons could be just as essential as the biochemical pathways that promote axon re-growth in repairing spinal cord injuries and other kinds of nerve damage.

The scientists were also surprised to learn that some of the genes they found to be involved in the re-growth of axons were known to have other functions, such as regulating the release of neurotransmitters.

"This was in large part unexpected," said Chisholm. "These genes had not been implicated in the re-growth of axons before."

To find the 76 genes, the researchers conducted painstaking experiments on more than 10,000 tiny laboratory roundworms known as C. elegans. The first step involved developing genetic mutants of these transparent roundworms for each one of 654 genes that were suspected to play a role in the regulation of axon regrowth in worms, fruit flies and mice. They then labeled the roundworm neurons with green fluorescent protein and, with a precise surgical laser, damaged a specific axon.

"The goal was to study this process in its simplest form," said Chisholm. "Because the animals are essentially transparent, we can see the axons expressing this green fluorescent protein."

By examining the re-growth, or lack of growth, of the damaged axon 24 hours later, the scientists were then able to determine which of these 654 genes were actually important to axon re-growth.

Chisholm said that while the 76 genes identified are believed to have similar roles in mammals as well as roundworms, because their functions were "conserved" by the organisms through evolution, he and his research team are now collaborating with other investigators to conduct experiments on mice to verify this connection and determine which of these genes are the most critically important.

"Worms are clearly different from mammals," he added. "But there will be a core of conserved molecules doing the same job."
-end-
In addition to Chisholm and Jin, the UC San Diego biologists involved in the study were Lizhen Chen, Zhiping Wang, Anindya Ghosh-Roy, Thomas Hubert, Dong Yan, and Zilu Wu. Sean O'Rourke and Bruce Bowerman from the University of Oregon were also part of the team.

The research project was supported by grants from the National Institutes of Health and the Howard Hughes Medical Institute.

University of California - San Diego

Related Spinal Cord Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Improving treatment of spinal cord injuries
A group led by UC Riverside bioengineering professor Victor G.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.

An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.

Read More: Spinal Cord News and Spinal Cord Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.