Scientists play ping-pong with single electrons

September 21, 2011

Scientists at Cambridge University have shown an amazing degree of control over the most fundamental aspect of an electronic circuit, how electrons move from one place to another.

Researchers from the University's Cavendish Laboratory have moved an individual electron along a wire, batting it back and forth over sixty times, rather like the ball in a game of ping-pong. The research findings, published today (22 September) in the journal Nature, may have applications in quantum computing, transferring a quantum 'bit' between processor and memory, for example.

Imagine you are at a party and you want to get to the other side of a crowded room to talk to someone. As you walk you have to weave around people who are walking, dancing or just standing in the way. You may also have to stop and greet friends along the way and by the time you reach the person you wanted to talk to you have forgotten what you were going to say. Wouldn't it be nice to be lifted up above the crowd, and pushed directly to your destination?

In a similar way, electrons carrying a current along a wire do not go directly from one end to the other but instead follow a complicated zigzag path. This is a problem if the electron is carrying information, as it tends to 'forget' it, or, more scientifically, the quantum state loses coherence.

In this work, a single electron can be trapped in a small well (called a quantum dot), just inside the surface of a piece of Gallium Arsenide (GaAs). A channel leads to another, empty, dot 4 microns (millionths of a metre) away. The channel is higher in energy than the surrounding electrons. A very short burst of sound (just a few billionths of a second long) is then sent along the surface, past the dot. The accompanying wave of electrical potential picks up the electron, which then surfs along the channel to the other dot, where it is captured. A burst of sound sent from the other direction returns the electron to the starting dot where the process can be repeated. The electron goes back and forth like a ping-pong ball. Rallies of up to 60 shots have been achieved before anything goes wrong.

"The movement of electrons by our 'surface acoustic wave' can also be likened to peristalsis in the oesophagus, where food is propelled from the mouth to the stomach by a wave of muscle contraction," explains Rob McNeil, the PhD student who did most of the work, helped by postdoc Masaya Kataoka, both at the University of Cambridge's Department of Physics, the Cavendish Laboratory.

"This is an enabling technology for quantum computers," Chris Ford, team leader of the research from the Semiconductor Physics Group in the Cavendish, says. "There is a lot of work going on worldwide to make this new type of computer, which may solve certain complex problems much faster than classical computers. However, little effort has yet been put into connecting up different components, such as processor and memory. Although our experiments do not yet show that electrons 'remember' their quantum state, this is likely to be the case. This would make the method of transfer a candidate for moving quantum bits of information (qubits) around a quantum circuit, in a quantum computer. Indeed, our theorist, Crispin Barnes, proposed using this mechanism to make a whole quantum computer a long time ago, and this is an important step towards that goal."
For additional information, please contact:

Robert McNeil
Phone: +447941626626

Dr Christopher Ford
Phone: +441223337486 office/+447968853350 mobile

Notes to Editors:

1. Paper to appear in Nature September 22nd 2011; doi: 10.1038/nature10444

2. Web page:

3. Images and video (may be used for publication)

Fig. 1
Illustration of the potential-energy landscape seen by an electron, and the potential wave produced by a sound pulse (surface acoustic wave, SAW) coming from bottom right and moving past the first dot, along the channel towards the other dot. [Link to same high-resolution image without labels: , with labels:]

Fig. 2
Still from an animated illustration in cross section of a sound wave capturing an electron from a well (dot) and transferring it to a second dot. Animation available at or . Still available at: .

University of Cambridge

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to