UT awarded NIH grants to study prevention and treatment of neurodegenerative and vascular diseases

September 21, 2011

The National Institutes of Health (NIH) has awarded researchers at The University of Texas at Austin two highly competitive research grants to create novel therapeutics for treating heart disease as well as to develop technology that significantly reduces the time and costs required to test drugs for neurodegenerative disease.

The grants are part of a $143.8 million funding initiative provided by NIH this year to 79 researchers around the nation. The awards are granted under three innovative research programs supported by the NIH Common Fund: the NIH Director's Pioneer, New Innovator and Transformative Research Projects Awards.

"The awards are intended to catalyze giant leaps forward for any area of biomedical research, allowing investigators to go in entirely new directions," said James M. Anderson, director of the NIH Division of Program Coordination, Planning and Strategic Initiatives, who guides the Common Fund's High-Risk Research program.

Cockrell School of Engineering Associate Professor Adela Ben-Yakar and College of Natural Sciences Assistant Professor Jon Pierce-Shimomura were selected to receive the Transformative Research Project award for their research to prevent degeneration of the nervous system. Degeneration, which occurs through natural aging and diseases like Alzheimer's, has become a pervasive and growing problem in the last century due to new treatments that extend lifespan but cannot prevent neurological decline.

"We can treat cancer when we diagnose it on time and maybe find solutions for heart problems, but when it comes to the brain we don't have many effective solutions," said Ben-Yakar, from the Department of Mechanical Engineering whose mother has Alzheimer's disease. "[Neurodegeneration] is a big problem for all of humanity. As an engineer, it excites me to find new ways of doing things, but the end result is what really motivates me and my colleague."

A huge barrier to preventing or treating diseases like Alzheimer's disease is the amount of time it takes to identify drugs that work effectively. Typically, drugs are tested on mice -- a process that is expensive and requires one to two years for mice to age while testing just a few dozen drugs at a time. With the grant, Ben-Yakar and Pierce-Shimomura will develop an automated system that rapidly reduces this time and cost. Instead of mice, the researchers will use a short-lived, 1 mm-long worm, known as C. elegans, to test the effectiveness of millions of drugs. The researchers will also develop novel optical techniques and microfluidic devices that are capable of determining -- within a matter of seconds -- which drugs are effective.

"This award will enable our ambitious project to use advanced engineering techniques to analyze how millions of drugs may prevent neurons from dying in neurodegenerative disease," said Pierce-Shimomura, an assistant professor in the Section of Neurobiology who has a son with Down syndrome, a condition that predisposes him to Alzheimer's disease. "A drug screen of this size has never been attempted."

Aaron Baker, an assistant professor in the Department of Biomedical Engineering, has also been selected as one of the 49 scientists and engineers around the country to receive a NIH Director's New Innovator Award.

This prestigious award is designed to support unusually creative new investigators with highly innovative research ideas at an early stage of their career.

Baker will receive $1.5 million over five years to study and develop innovative ways to regrow small blood vessels in the heart. The ability to regrow the vessels could prove crucial to treating chronic myocardial ischemia disease, which affects up to 27 million patients in the U.S. and leads to a reduction of blood flow in the heart and, ultimately, causes organ dysfunction and failure.

The disease has traditionally been treated by physically opening the artery or surgically rerouting blood flow to the poorly perfused tissue. Both methods have limitations, however, and are not effective long-term.

With the NIH grant, Baker will study why previous attempts to restore blood flow to the heart have not been effective. His research aims to design new molecular tools and drug delivery methods to enable blood vessel growth in patients with diseases such as diabetes.

"Together, the studies performed and the tools developed will increase our understanding of how tissues become resistant to revascularization therapies and may lead to more effective treatments for this widespread and debilitating disease," Baker said.
-end-
For more information on the awards, visit the NIH Common Fund.

University of Texas at Austin

Related Blood Flow Articles from Brightsurf:

Brain regions with impaired blood flow have higher tau levels
In Alzheimer's disease, impaired blood flow to brain regions coincides with tau protein buildup.

3D ultrasound enables accurate, noninvasive measurements of blood flow
A 3D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a new study.

Blood flow recovers faster than brain in micro strokes
Work by a Rice neurobiologist shows that increased blood flow to the brain is not an accurate indicator of neuronal recovery after a microscopic stroke.

Exercise improves memory, boosts blood flow to brain
Scientists have collected plenty of evidence linking exercise to brain health, with some research suggesting fitness may even improve memory.

3D VR blood flow to improve cardiovascular care
Biomedical engineers are developing a massive fluid dynamics simulator that can model blood flow through the full human arterial system at subcellular resolution.

MRI shows blood flow differs in men and women
Healthy men and women have different blood flow characteristics in their hearts, according to a new study.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.

Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.

Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.

Read More: Blood Flow News and Blood Flow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.