Albert La Spada receives Harrington Scholar Award to combat neurodegenerative disease

September 21, 2015

Albert La Spada, MD, PhD, professor of pediatrics, cellular and molecular medicine and neurosciences at University of California, San Diego School of Medicine, has received a 2015 Harrington Scholar award to advance his work on a therapy for Spinocerebellar ataxia type 7 (SCA7), a rare but devastating neurological disorder that can lead to blindness and progressive loss of physical coordination.

La Spada, chief of the Division of Genetics in the Department of Pediatrics at UC San Diego School of Medicine, received a $900,000 award to further development of a treatment which blocks the gene mutation underlying SCA7. The research also may have implications for Parkinson's disease, Huntington's and amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, which are neurodegenerative disorders with similar types of genetic mutations.

The scholar award is given by the Harrington Discovery Institute at University Hospitals in Cleveland, which collaborates with various organizations to accelerate the development of promising research by physician-scientists. In particular, the funding helps researchers to bridge the gap from basic research to clinical application, known as the "Valley of Death," which can keep innovative discoveries from advancing far enough to attract pharmaceutical drug development.

La Spada, also at Rady Children's Hospital-San Diego, was one of three inaugural Gund-Harrington Scholars, named after Gordon Gund, founder of Foundation Fighting Blindness, a consortium of groups funding research in the area of degenerative retinal diseases.

"People with this disorder (SCA7) have trouble walking, talking, seeing - anything that requires coordinated movement," said La Spada. "It can progress to the point that they can't walk properly, need a cane, end up in a wheelchair and also can't see. It's a pretty horrible disease and affects numerous people, many of whom are teenagers or young adults."

La Spada began his work on neurodegenerative disorders while in graduate school and drew national interest for his discovery of the cause of a neuromuscular disorder known as X-linked spinal and bulbar muscular atrophy, or Kennedy's disease. He pinpointed a novel genetic mutation, resulting in the expansion of a triplet repeat of a nucleotide sequence, as the underlying cause. The finding represented a new type of genetic mutation and has now been implicated in other neurodegenerative diseases, including Huntington's and ALS. "The mutation (expansion of a repeating sequence) is the same, but in each disease it involves a different gene," he said.

In his work on SCA7, La Spada and colleagues created a mouse model in which they blocked the key SCA gene mutation using specialized gene-silencing technology. "We have found that we can rescue the vision of the mice," said La Spada. In parallel studies, the researchers bred mice with the gene turned off at birth. "These mice were essentially OK, with no problems with movement control or vision," he added. "The idea now is to continue this work in the hope that we can perfect it and bring it into human patients." The goal is to launch a Phase I human clinical trial by the end of the three-year Gund-Harrington funding.

If the therapeutic strategy proves successful in SCA7, La Spada said he hopes it can also be tried in more common neurological diseases like Parkinson's and ALS.
-end-


University of California - San Diego

Related Blindness Articles from Brightsurf:

New eye drops may prevent a common cause of blindness
New eye drops could prevent vision loss after retinal vein occlusion, a major cause of blindness for millions of adults, a study by Columbia University researchers has found.

Scientists pinpoint brain coordinates for face blindness
Danish and Norwegian researchers have moved one step closer to understanding where face blindness stems from in the brain.

Protein closely linked to commonest cause of blindness
An international team of scientists has identified a protein which is strongly linked to the commonest cause of blindness in developed countries when its levels are raised in the blood.

New glaucoma test to help prevent blindness
Researchers have identified 107 genes that increase a person's risk of developing the eye disease glaucoma, and now developed a genetic test to detect those at risk of going blind from it.

Treatments for leading cause of blindness generate $0.9 to $3 billion
A new economic study, published in JAMA Ophthalmology and conducted by USC researchers at the Schaeffer Center for Health Policy & Economics, the Ginsburg Institute for Biomedical Therapeutics, and the Roski Eye Institute, quantifies the benefits of treatment for wAMD.

Identifying a gene for canine night blindness
An international team of researchers led by the University of Pennsylvania's Keiko Miyadera has identified the gene mutation responsible for a form of night blindness in dogs.

Poor diet can lead to blindness
An extreme case of 'fussy' or 'picky' eating caused a young patient's blindness, according to a new case report published today [2 Sep 2019] in Annals of Internal Medicine.

Brighter possibilities for treating blindness
Advances in preclinical research are now being translated into innovative clinical solutions for blindness, a review published in the 10th anniversary series of science Translational Medicine depicts.

How blindness shapes sound processing
Adults who lost their vision at an early age have more refined auditory cortex responses to simple sounds than sighted individuals, according to new neuroimaging research published in JNeurosci.

Study identifies new genes associated with the leading cause of blindness
A new study, published in Clinical Epigenetics, identifies genes associated with Age-related Macular Degeneration (AMD) that could represent new targets for future drug development.

Read More: Blindness News and Blindness Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.