A faster and more reliable method to categorize olive oil is validated

September 21, 2020

Classifying olive oils into the categories of extra virgin (EVOO), virgin (VOO) and lampante (LOO) is still quite a challenge to deal with since the official method includes physical-chemical and sensory analyses by means of a panel of tasters. These tasters need to be specialized, and on many occasions are not available, in addition to being expensive and slow. All of this has created the necessity to develop new analytical methods using affordable, reliable tools that are transferable to the industry.

The AGR-287 research group, led by Professor Lourdes Arce, was a pioneer in demonstrating the possibilities that Gas Chromatography along with Ion Mobility Spectrometry (GC-IMS) could provide in order to classify oils into three categories (EVOO, VOO and LOO). This methodology allows for analyzing two samples an hour. When a representative number of samples has been analyzed, the chemical information gathered is dealt with using statistical tools in order to create calibration equations that will allow for classification of samples of unknown oil into their respective categories in the future.

A crucial point in the validation of this method is the number of samples needed to calibrate the equipment. The research done has shown that, in order to obtain good results, it is not only necessary to analyze a representative number of samples but to also have samples of olive oil belonging to each of the three categories, from different varietals, from different seasons and tasted by at least two panels whose results coincide. Hence, these methods do not seek to substitute, but rather complement and support, the role of accredited tasting panels. In these research projects, the importance of building a bank of oil samples has been demonstrated, so that they can be reference standards that will be used to construct calibrated equations. These equations will establish the categories of analyzed oil samples.

The results obtained from this research have aroused interest among different businesses in the oil sector that are currently collaborating on carrying out transferring this research to the industry. What is more, using the knowledge ensuing from this research, a new instrument is being developed that will classify oils based on the use of IMS technology. This makes up one of the lines of Project Innolivar, whose aim is to increase competitiveness, international positioning, technological capacity and financial profitability of olive groves and their associated business sector.

Another research project being carried out by doctoral student Natividad Jurado, has revealed that the proper classification of oils requires taking the chemical compounds that each taster discerns into consideration as well. The proposed methodology is based on the extraction of certain compounds present in oil, for instance polyphenols, and then determining them using capillary electrophoresis (CE-UV) - a technique to separate different molecules - coupled with an ultraviolet detector. In a paper published in Talanta, the integrated use of both techniques (CE-UV and GC-IMS) was suggested in order to detect non-volatile compounds detected by the mouth, and also the volatile compounds detected by the nose. All the information obtained with both techniques is dealt with by statistical tools suitable for classifying an oil sample into the correct category. This fusion of data has been proven to be useful when classifying borderline samples that are at the interface of two groups (EVOO/VOO or VOO/LOO).
Natividad Jurado-Campos, Natalia Arroyo-Manzanares, Pilar Viñas, Lourdes Arce. "Quality authentication of virgin olive oils using orthogonal techniques and chemometrics based on individual and high-level data fusion information", Talanta. https://doi.org/10.1016/j.talanta.2020.121260

University of Córdoba

Related Oil Articles from Brightsurf:

The first battle for oil in Norway
The world's richest man and the world's largest oil company dominated the petroleum market in Norway long before landmark finds on the Norwegian continental shelf and the Norwegian oil fund.

Oil droplet predators chase oil droplet prey
Oil droplets can be made to act like predators, chasing down other droplets that flee like prey mimicking behavior seen among living organisms.

Healthy oil from wild olives
The oil from wild olive trees has excellent sensorial, physicochemical and stability characteristics from a nutritional point of view, according to an article published in the journal Antioxidants.

Oil-soluble transition metal-based catalysts tested for in-situ oil upgrading
The results of the study showed that the good catalytic properties of the new transition metal catalysts, as well as their low cost and easy accessibility, make them a potential solution in the aquathermolysis reaction and heavy oil recovery.

New method for removing oil from water
Oil poses a considerable danger to aquatic life. Researchers at the Universities of Bonn and Aachen and the Heimbach-GmbH have developed a new technology for the removal of such contaminations: Textiles with special surface properties passively skim off the oil and move it into a floating container.

A sustainable alternative to crude oil
A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production -- a successful example for a more sustainable economy with bio-based materials.

When grown right, palm oil can be sustainable
Turning an abandoned pasture into a palm tree plantation can be carbon neutral, according to a new study by EPFL and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL).

Oil futures volatility and the economy
The drone strike on Saudi Arabia's oil infrastructure has highlighted the fragile and interconnected relationship between crude oil supply and the global economy, with new research bringing these economic ties into greater focus.

All-in-one: New microbe degrades oil to gas
The tiny organisms cling to oil droplets and perform a great feat: As a single organism, they may produce methane from oil by a process called alkane disproportionation.

Marine oil snow
Marine snow is the phenomena of flakes of falling organic material and biological debris cascading down a water column like snowflakes.

Read More: Oil News and Oil Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.