Nav: Home

Cosmic X-rays reveal an indubitable signature of black holes

September 21, 2020

An international team of astrophysicists has found distinctive signatures of black hole event horizon, unmistakably separating them from neutron stars -- objects, comparable to black holes in mass and size but confined within a hard surface. This is by far the strongest steady signature of stellar-mass black holes to date. The team consisting of Mr. Srimanta Banerjee and Professor Sudip Bhattacharyya from the Tata Institute of Fundamental Research, India, and Professor Marat Gilfanov and Professor Rashid Sunyaev from Max Planck Institute for Astrophysics, Germany and Space Research Institute of Russian Academy of Sciences, Russia is publishing this research in a paper that has been accepted for publication in Monthly Notices of the Royal Astronomical Society.

A black hole is an exotic cosmic object without a hard surface predicted by Einstein's theory of General Relativity. Although it does not have a surface, it is confined within an invisible boundary, called an event horizon, from within which nothing, not even light, can escape. Definitive proof of the existence of such objects is a holy grail of modern physics and astronomy.

Only one supermassive black hole -- with the mass more than 6 billion times the mass of the Sun -- has so far been imaged using the surrounding radiation in radio wavelengths. But stellar-mass black holes -- with masses of about ten times the mass of the Sun -- should bend the spacetime around them at least ten thousand trillion times more than such a supermassive black hole does. Such smaller black holes are therefore indispensable to probe some extreme aspects of nature. When these smaller black holes merge with each other, they could be inferred from gravitational waves. Such waves are transient events, lasting for a fraction of a second and it is of immense interest to have a definitive proof of the existence of a stable stellar-mass black hole, which shine mainly in X-rays by devouring material from a companion star.

A neutron star, the densest known object in the universe with a hard surface, can also shine in X-rays by accreting matter from a companion star in a similar way, characterized by extremely high efficiency of conversion of the rest-mass energy mc2 to radiation, of the order of 20%. In order to prove the existence of stellar-mass black holes, one needs to distinguish them from such neutron stars. The authors of this research have done exactly that. Using the archival X-ray data from the now decommissioned astronomy satellite Rossi X-Ray Timing Explorer, they have identified the effect of the lack of hard surface on the observed X-ray emission, and thus have found an extremely strong signature of accreting stellar-mass black holes.

Tata Institute of Fundamental Research

Related Black Hole Articles:

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.
How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.
Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.
Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.
Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.