Nav: Home

Nanoparticle SARS-CoV-2 model may speed drug discovery for COVID-19

September 21, 2020

A team of scientists from the National Center for Advancing Translational Sciences (NCATS) and Naval Research Laboratory (NRL) in Washington, D.C., has developed a new tool that mimics how SARS-CoV-2 -- the virus that causes COVID-19 -- infects a cell, information that could potentially speed the search for treatments against the disease.

The tool is a fluorescent nanoparticle probe that uses the spike protein on the surface of SARS-CoV-2 to bind to cells and trigger the process that pulls the virus into the cell. The probe could be used in tests to rapidly gauge the ability of biologics, drugs and compounds to block the actual virus from infecting human cells. The researchers' findings appeared online Aug. 26 in ACS Nano.

"Our goal is to create a screening system to find compounds that block SARS-CoV-2 from binding to cells and infecting them," explained Kirill Gorshkov, Ph.D., a translational scientist at NCATS and a co-corresponding author of the study.

However, using the actual virus in such screening studies would be difficult and require special facilities. Instead, Gorshkov and Eunkeu Oh, Ph.D., a research biophysicist at NRL and co?corresponding author of the study, and their colleagues wanted to use nanoparticles to mimic the viral function of binding to and invading the host human cell.

The NCATS and NRL researchers collaborated to design and test the probe, combining their complementary skill sets to deliver results far sooner than separate research efforts would have. The NRL team, led by Mason Wolak, Ph.D., an expert in optical nanomaterials, put the initial collaboration together.

"We at NRL are experts in nanoparticles, and the NCATS researchers are experts in drug screening using cellular systems," explained Oh. "So, it was the perfect match."

To create the probe, NRL scientists built a fluorescent nanoparticle called a quantum dot, fashioned from cadmium and selenium. At around 10 nanometers in size, these spherical nanoparticles are 3,000 times smaller than the width of a human hair.

The NCATS-NRL research team then studded the quantum dots' surfaces with a section of the SARS-CoV-2 spike protein that binds to the angiotensin-converting enzyme 2 (ACE2) receptor on human cells. The union of the spike protein with ACE2 is the first step in the pathway to viral infection.

The glow from the quantum dots allows scientists to track the dots' behavior under a microscope. "Because they're such bright fluorescent objects, the quantum dots give us a powerful system to track viral attachment and effects on the cell in real time," explained Gorshkov.

The investigators tracked how the quantum dot probes interacted with human cells that have ACE2 on their surfaces. They watched the nanoparticle probes attach to ACE2, which combined with the probes and pulled them into the cells. The quantum dot probes did the same in a lung cell line commonly used in coronavirus assays. Safety data showed that the probes were not toxic to the test cells at the concentrations and exposure times used in the study.

The quantum dots followed the SARS-CoV-2 pathway into cells, but the research team found the probes also mimicked the virus in the presence of antibodies. Antibodies are proteins made by the immune system that can neutralize viruses such as SARS-CoV-2. The antibodies proved to be potent inhibitors of the quantum dot probes as well, preventing them from binding to ACE2 and entering human cells.

That antibody response means the quantum dot probes could help researchers rapidly test the ability of potential therapeutic agents to block the virus from entering and infecting cells. Assays using the probes also could determine the concentrations at which potential treatments may safely and effectively block infection.

"Using the quantum dots, we could create tests to use in drug screening and drug repurposing, using libraries of compounds that have activity but that also are approved by the U.S. Food and Drug Administration," Gorshkov said. "Such assays could rapidly identify promising, safe treatments for COVID-19."

ACE2 may not be the only receptor SARS-CoV-2 targets, and the quantum dot probe's flexible design will allow researchers to swap in spikes that bind to other receptors. With the probe, researchers also could test how mutations in the spike change the way the virus behaves -- and how well treatments work -- by adding the mutated spikes to the quantum dots.

Beyond SARS-CoV-2, researchers could revise the nanoparticle probe to mimic other viruses and reveal their pathways to infection. The quantum dot probes also could be useful when testing potential therapies for other diseases, Gorshkov said. The quantum dots also might deliver drugs directly to cells, narrowing treatment to specific cell types, organs or cancers.

NIH/National Center for Advancing Translational Sciences (NCATS)

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.