Marine sponges inspire the next generation of skyscrapers and bridges

September 21, 2020

When we think about sponges, we tend to think of something soft and squishy. But researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are using the glassy skeletons of marine sponges as inspiration for the next generation of stronger and taller buildings, longer bridges, and lighter spacecraft.

In a new paper published in Nature Materials, the researchers showed that the diagonally-reinforced square lattice-like skeletal structure of Euplectella aspergillum, a deep-water marine sponge, has a higher strength-to-weight ratio than the traditional lattice designs that have used for centuries in the construction of buildings and bridges.

"We found that the sponge's diagonal reinforcement strategy achieves the highest buckling resistance for a given amount of material, which means that we can build stronger and more resilient structures by intelligently rearranging existing material within the structure," said Matheus Fernandes, a graduate student at SEAS and first author of the paper.

"In many fields, such as aerospace engineering, the strength-to-weight ratio of a structure is critically important," said James Weaver, a Senior Scientist at SEAS and one of the corresponding authors of the paper. "This biologically-inspired geometry could provide a roadmap for designing lighter, stronger structures for a wide range of applications."

If you've ever walked through a covered bridge or put together a metal storage shelf, you've seen diagonal lattice architectures. This type of design uses many small, closely spaced diagonal beams to evenly distribute applied loads. This geometry was patented in the early 1800s by the architect and civil engineer, Ithiel Town, who wanted a method to make sturdy bridges out of lightweight and cheap materials.

"Town developed a simple, cost-effective way to stabilize square lattice structures, which is used to this very day," said Fernandes. "It gets the job done, but it's not optimal, leading to wasted or redundant material and a cap on how tall we can build. One of the main questions driving this research was, can we make these structures more efficient from a material allocation perspective, ultimately using less material to achieve the same strength?"

Luckily, the glass sponges, the group to which Euplectella aspergillum -- otherwise known as Venus' Flower Basket belongs -- had a nearly half billion-year head start on the research and development side of things. To support its tubular body, Euplectella aspergillum employs two sets of parallel diagonal skeletal struts, which intersect over and are fused to an underlying square grid, to form a robust checkerboard-like pattern.

"We've been studying structure-function relationships in sponge skeletal systems for more than 20 years, and these species continue to surprise us," said Weaver.

In simulations and experiments, the researchers replicated this design and compared the sponge's skeletal architecture to existing lattice geometries. The sponge design outperformed them all, withstanding heavier loads without buckling. The researchers showed that the paired parallel crossed-diagonal structure improved overall structural strength by more than 20 percent, without the need to add additional material to achieve this effect.

"Our research demonstrates that lessons learned from the study of sponge skeletal systems can be exploited to build structures that are geometrically optimized to delay buckling, with huge implications for improved material use in modern infrastructural applications," said Katia Bertoldi, the William and Ami Kuan Danoff Professor of Applied Mechanics at SEAS and a corresponding author of the study.
-end-
The Harvard Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.

This paper was also co-authored by Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science and Professor of Chemistry & Chemical Biology at SEAS, and the research was supported in part by the National Science Foundation through the Harvard University Materials Research Science and Engineering Center DMR-2011754 and NSF DMREF Grant DMR-1922321.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.