Parkinson's disease is not one, but two diseases

September 21, 2020

Although the name may suggest otherwise, Parkinson's disease is not one but two diseases, starting either in the brain or in the intestines. Which explains why patients with Parkinson's describe widely differing symptoms, and points towards personalised medicine as the way forward for people with Parkinson's disease.

This is the conclusion of a study which has just been published in the leading neurology journal Brain.

The researchers behind the study are Professor Per Borghammer and Medical Doctor Jacob Horsager from the Department of Clinical Medicine at Aarhus University and Aarhus University Hospital, Denmark.

"With the help of advanced scanning techniques, we've shown that Parkinson's disease can be divided into two variants, which start in different places in the body. For some patients, the disease starts in the intestines and spreads from there to the brain through neural connections. For others, the disease starts in the brain and spreads to the intestines and other organs such as the heart," explains Per Borghammer.

He also points out that the discovery could be very significant for the treatment of Parkinson's disease in the future, as this ought to be based on the individual patient's disease pattern.

Parkinson's disease is characterised by slow deterioration of the brain due to accumulated alpha-synuclein, a protein that damages nerve cells. This leads to the slow, stiff movements which many people associate with the disease.

In the study, the researchers have used advanced PET and MRI imaging techniques to examine people with Parkinson's disease. People who have not yet been diagnosed but have a high risk of developing the disease are also included in the study. People diagnosed with REM sleep behaviour syndrome have an increased risk of developing Parkinson's disease.

The study showed that some patients had damage to the brain's dopamine system before damage in the intestines and heart occurred. In other patients, scans revealed damage to the nervous systems of the intestines and heart before the damage in the brain's dopamine system was visible.

This knowledge is important and it challenges the understanding of Parkinson's disease that has been prevalent until now, says Per Borghammer.

"Until now, many people have viewed the disease as relatively homogeneous and defined it based on the classical movement disorders. But at the same time, we've been puzzled about why there was such a big difference between patient symptoms. With this new knowledge, the different symptoms make more sense and this is also the perspective in which future research should be viewed," he says.

The researchers refer to the two types of Parkinson's disease as body-first and brain-first. In the case of body-first, it may be particularly interesting to study the composition of bacteria in the intestines known as the microbiota.

"It has long since been demonstrated that Parkinson's patients have a different microbiome in the intestines than healthy people, without us truly understanding the significance of this. Now that we're able to identify the two types of Parkinson's disease, we can examine the risk factors and possible genetic factors that may be different for the two types. The next step is to examine whether, for example, body-first Parkinson's disease can be treated by treating the intestines with faeces transplantation or in other ways that affect the microbiome," says Per Borghammer.

"The discovery of brain-first Parkinson's is a bigger challenge. This variant of the disease is probably relatively symptom-free until the movement disorder symptoms appear and the patient is diagnosed with Parkinson's. By then the patient has already lost more than half of the dopamine system, and it will therefore be more difficult to find patients early enough to be able to slow the disease," says Per Borghammer.

The study from Aarhus University is longitudinal, i.e. the participants are called in again after three and six years so that all of the examinations and scans can be repeated. According to Per Borghammer, this makes the study the most comprehensive ever, and it provides researchers with valuable knowledge and clarification about Parkinson's disease - or diseases.

"Previous studies have indicated that there could be more than one type of Parkinson's, but this has not been demonstrated clearly until this study, which was specifically designed to clarify this question. We now have knowledge that offers hope for better and more targeted treatment of people who are affected by Parkinson's disease in the future," says Per Borghammer.

According to the Danish Parkinson's Disease Association, there are 8,000 people with Parkinson's disease in Denmark and up to eight million diagnosed patients worldwide.

This figure is expected to increase to 15 million in 2050 due to the ageing population, as the risk of getting Parkinson's disease increases dramatically the older the population becomes.
-end-


Aarhus University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.