Lands surface change on Alaska tundra creating longer, warmer summers in Arctic

September 22, 2005

A gradual lengthening of the snow-free season in Alaska's tundra, and a corresponding northward progression of the growth of shrubs and trees, may be creating a cycle of warmer and longer summers in the Alaskan Arctic according to a new study to be published in the Sept. 22, 2005, issue of Science Express.

The resulting atmospheric heating in the region of northern Alaska is equivalent to what might be observed if there was a doubling of carbon dioxide in the atmosphere. Continuation of this trend could further amplify atmospheric heating in the region by two to seven times and could possibly contribute to broader changes in climate.

"We suggest that a noticeable summer warming trend in Alaska is best explained by a lengthening of the snow-free season there," said Howard E. Epstein, an associate professor of environmental sciences at the University of Virginia and a co-author of the new study. The scientists determined that the increasing summer temperatures in northern Alaska could not be attributed to regional atmospheric circulation patterns or to a reduction in sea ice in the summer or to an increase in cloud cover. The observed summer temperature increases are likely related to a global warming trend that has led to a longer snow-free season and an increase in the extent of woody vegetation. Both of these changes increase the amount of solar radiation that goes into heating rather than being reflected back to the atmosphere.

Epstein said that since the early 1960s the spring thaw in Alaska's tundra country is arriving an average of 2.3 days earlier each decade. As a result, plants in the region now "leaf out" about 2.7 days earlier than in previous decades. Likewise, the first freeze each year is arriving slightly later, allowing plants to extend their growing season. The longer growing season is allowing shrubs and trees to slowly migrate northward. The increasing woody vegetation is further warming the near-surface atmosphere by absorbing rather than reflecting incoming solar radiation.

"The vegetation change is pretty dramatic," Epstein said. "The tundra is getting greener, and there is a noticeable increase in shrubs. This is observable from satellite data and by observations on the ground. Native American people in the region and nearby areas also have noted the changes in weather and vegetation."

Because there is a shorter period of snow on the ground, solar radiation is absorbed by the land surface more readily and contributes to heating, thus accelerating the melting of snow and allowing for more plant growth. Over time, as the permafrost begins to melt, ancient organic matter that has been frozen for thousands of years is exposed, potentially adding more carbon dioxide to the atmosphere.

The result is a positive feedback loop that could continue to raise temperatures in the region and further lengthen the snow-free period each year.

Since the early 1960s, scientists have identified "hotspots" of slowly increasing average summer temperatures in the Arctic, from 0.15 degrees Celsius to about 2 degrees Celsius for an average increase of 1.2 degrees Celsius in the summertime.

"We know that certain parts of the Arctic are warming pretty substantially and more so than in other regions around the globe," Epstein said. "This is significant because conditions in the Arctic affect global atmosphere conditions. The Arctic is dominated by snow and ice, and if this condition were to change, even subtly, there is potential for further change to the global climate."
-end-
Investigators from several universities and other institutions conducted the research, which was funded by the National Science Foundation through its Arctic Transitions of the Land/Atmosphere System project.

Editors note: Photos of the tundra are available by request.

University of Virginia

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.