Fruit flies help Yale scientists sniff out new insect repellents

September 22, 2010

By following the "nose" of fruit flies, Yale scientists are on the trail of new insect repellents that may reduce the spread of infectious disease and damage to agricultural crops. That's because they've learned for the first time how a group of genes used to differentiate smells is turned on and off, opening new possibilities for insect control. Just as in new drug development, researchers can target these or similar genes in other insects to create substances that make crops and people "invisible" to insect antennae. Without the ability to smell correctly, the insects are far less likely to attack a person or plant, as is the case with mosquitoes whose ability to smell lactic acid is disrupted by the active ingredient in insect repellents, DEET. This finding is reported in the September 2010 issue of the journal GENETICS (http://www.genetics.org).

According to Carson Miller, a researcher involved in the work from the Department of Molecular, Cellular and Developmental Biology at Yale University, "One of the fundamental questions in biology is, 'how does a cell choose which genes it should turn on and which genes it should turn off?' By studying this question in odor-sensitive neurons of fruit flies, we hope to learn how cells make these choices, as well as to develop more effective odor-based insect repellents."

The scientists studied four genes from a group of odor receptor genes in the fruit fly. These genes afford flies the ability to detect different scents. Pieces of DNA in front of these genes contained enough information to tell the fly to turn on these genes in specific cells of the antenna. Miller made an artificial reporter gene that used the regulatory DNA in front of an Odor receptor gene to control a test gene that could be easily monitored for expression. An entire set of such reporter genes were created, each containing less of the regulatory DNA. The goal was to determine how short the regulatory region could be and yet still control the test gene normally. This helped Miller to identify where the important control elements lie in the regulatory DNA, and whether they serve to turn the gene on in cells where it is needed or to turn the gene off where it doesn't belong.

"The sense of smell is an Achilles heel for many insects," said Mark Johnston, Editor-in-Chief of the journal GENETICS, "and the more we learn about odor receptors the easier it will be to interfere with them to battle insect-borne disease and crop devastation. This study is a step forward in doing that by identifying the mechanism that results in the highly selective expression of 'smell genes'."
-end-
DETAILS: Carson J. Miller and John R. Carlson. Regulation of odor receptor genes in trichoid sensilla of the Drosophila antenna. Genetics 2010 186:79-95.

Since 1916, the journal GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Genetics Society of America

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.