Cell division typically associated with cancer may also protect the liver from injury

September 22, 2010

PORTLAND, Ore. -- Researchers at Oregon Health & Science University have discovered that a form of cell division typically associated with cancer called multipolar mitosis can yield diverse, viable cells capable of protecting the liver from injury and poisonous substances, such as pesticides, carcinogens or drugs. Their findings are published online in the journal Nature.

"Our findings show that the liver, which is known to have a tremendous capacity for regeneration, also has an amazing degree of diversity. A better understanding of this process may reveal why some individuals are more susceptible to different forms of liver injury than others, which could lead to new therapies for the treatment of liver disease," said Andrew Duncan, Ph.D., principal investigator and postdoctoral researcher in the lab of Markus Grompe, M.D., Papé Family Pediatric Institute, OHSU Doernbecher Children's Hospital; and the Oregon Stem Cell Center at OHSU.

The liver comprises a pool of genetically distinct hepatocytes, the primary functional cell type in the liver. Duncan and colleagues' work suggests that in response to liver injury that is toxic to most hepatocytes, a subset of select hepatocytes may respond favorably, thereby preventing liver failure and ensuring survival of the organism.

Unique among other cells in the body, hepatocytes in humans and rodents contain either a single nucleus with one set of DNA, called diploid hepatocytes, or one-two nuclei with multiple sets of DNA, called polyploid hepatocytes, explained Duncan. The functional significance of hepatic polyploidy is unknown.

Duncan and colleagues endeavored to study the function of mouse polyploid hepatocytes using multiple approaches, including therapeutic liver repopulation, live cell imaging and cytogenetic analysis. While most polyploid hepatocytes underwent normal cell division to generate two identical daughter cells, approximately 4 percent of polyploid hepatocytes underwent specialized cell divisions, or multipolar mitosis, generating genetically distinct daughter cells. These unique daughter hepatocytes contained either chromosomal gains/losses, known as aneuploidy, or one-half DNA content of the parental polyploid hepatocyte.

The research team characterized the extent of hepatocyte aneuploidy in livers from healthy adult mice and found chromosomal gains and/or losses in more than 60 percent of hepatocytes. Together, the data show that hepatocyte proliferation involves a cycle of polyploidization, "ploidy reversal"-- the opposite of polyploidization -- and aneuploidy. The researchers call this dynamic process the "ploidy conveyor."

"Aneuploidy is most often associated with cancer, therefore our finding of pervasive aneuploidy in the liver is very surprising. Despite the high prevalence of numerical chromosome abnormalities, spontaneous liver cancer is rare in wild-type mice. We believe aneuploidy is a normal characteristic of hepatocytes. Furthermore, we speculate aneuploidy may be common in many different tissues. Studies are currently under way to characterize aneuploidy in human hepatocytes and other normal tissues in rodents and humans," said Duncan.

Although it is well known that hepatocytes become polyploid, the function of polyploid hepatocytes has been unknown. Andrew and colleagues suggest that proliferating hepatocytes polyploidize and undergo ploidy reversal, that is the ploidy conveyor, to specifically generate unique hepatocytes with different mixtures of chromosomes. This genetic diversity may operate as an adaptive mechanism, serving as a substrate for selection of those hepatocytes most resistant to foreign compounds, Duncan explained. In response to liver injury that is toxic to most hepatocytes, a subset of select hepatocytes may respond favorably, thereby preventing liver failure and ensuring survival of the organism.
-end-
Other OHSU investigators involved in the research include: Matthew H. Taylor; Raymond D. Hickey, Amy E. Hanlon Newell, Michelle Lenzi, Susan B. Olson, and Markus Grompe. Milton J. Finegold at Texas Children's Hospital also contributed to the study.

The research was supported by grants from the National Institutes of Health.

About Oregon Health & Science University

Oregon Health & Science University is the state's only health and research university and Oregon's only academic health center. OHSU is Portland's largest employer and the fourth largest in Oregon (excluding government). OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves patients from every corner of the state, and is a conduit for learning for more than 3,400 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to every county in the state.

Oregon Health & Science University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.