Nav: Home

Maternal experience brings an evolutionary advantage

September 22, 2015

Using a species of butterfly as an example, researchers from the Department of Environmental Sciences at the University of Basel have demonstrated how insects adapt their offspring to changing environmental conditions. The paper, published in the journal Ecology, shows that females pass on their own experience to their brood, even if this experience was not necessarily ideal. This rapid adaptation has huge implications for our understanding of speciation in insects.

In their study, the researchers working under Prof. Andreas Erhardt firstly confirmed their earlier results, which showed that parent generations of butterflies can condition their offspring to the quality of forage plants that they experienced as larvae. Secondly, they were able to provide evidence for the first time that the mothers of these offspring change their egg-laying behavior and prefer to deposit their eggs on plants on which they themselves once developed.

The Basel-based environmental scientists showed that young females of the small cabbage white (Pieris rapae) were more precise than their parents in laying their eggs on the very same plants that they (and their parents) experienced as larvae. This provided the scientists with proof of the adaptation process. In their study, the scientists used cabbage as a host plant and added either a large or a small quantity of nitrogen to it, bearing in mind that fertilization with nitrogen is favorable for the development of butterfly larvae. Although the plant containing more nitrogen therefore represented the better choice, females that had developed as caterpillars on plants with less nitrogen showed a tendency to lay their eggs on the unfertilized cabbage.

Accelerated speciation

This kind of breeding behavior has implications for our understanding of evolutionary and ecological processes. The conditioning of the offspring to the parents' own experiences only takes place if the offspring grow up in a similar environment to the parent generation. In species in which this conditioning occurs, the preference for the corresponding experience is therefore reinforced with each generation. This breeds offspring that are increasingly better adapted to the respective host plant, even if this actually doesn't provide optimal conditions - and, as a result, new species can emerge more quickly and more easily.

Although the conditioning may have succeeded in reducing the disadvantage caused by the less-favorable environment, it has not eradicated it completely. In compensation, females that accept or even prefer the disadvantageous environmental conditions have access to a greater selection of plants on which to lay their eggs, which leads to a reduction in competition within the species.

-end-



University of Basel

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.