Nav: Home

Stimuli fading away en route to consciousness

September 22, 2017

Whether or not we consciously perceive the stimuli projected onto our retina is decided in our brain. A recent study by the University of Bonn shows how some signals dissipate along the processing path to conscious perception. This process begins at rather late stages of signal processing. By contrast, in earlier stages there is hardly any difference in the reaction of neurons to conscious and unconscious stimuli. The paper is published in Current Biology.

The researchers are basing their study on a well-known phenomenon: When presented with two images in rapid succession, humans can only consciously perceive the second one if there is sufficient time between the two presentations. In this study the participants saw a series of pictures on a computer screen, where each image was presented for just over one tenth of a second. Before each series the participants were instructed to pay special attention to two target stimuli, and they were asked if those images were part of the series afterwards.

"We varied the time between the two attended images," explained Dr. Thomas P. Reber, one of the authors. "Sometimes they were presented directly one after the other, and sometimes there was one or even several images between them. Whenever both target stimuli were presented in close succession, participants reported in a little under half of the cases to only have seen the first one. This allowed us to compare conscious and unconscious processing of identical picture presentations."

A look inside the epileptic brain

Reber works in the Department of Epileptology at the University Hospital of Bonn - one of the biggest epilepsy centers in Europe. Among its patients are severe cases of so-called medial temporal lobe epilepsy. A last resort for them can be the removal of brain tissue triggering epileptic seizures. In some cases, electrodes are implanted into the patient's brain to localize the epileptic focus for later resection. As a byproduct, researchers can make use of this circumstance to virtually 'watch' the patients think.

This was also the case during the latest study - the 21 participants were all epilepsy patients with special microelectrodes implanted in the temporal lobe. "That way we were able to measure the reaction of single nerve cells to visual stimuli," explains Dr. Florian Mormann, Professor of Cognitive and Clinical Neurophysiology. "We wanted to investigate how the processing of images differs depending on whether they have been perceived consciously or not."

Seen: Yes. Consciously perceived: No.

When an image is projected onto the retina, the respective information is transmitted along the optic nerve to the so-called visual cortex at the back of the skull. From here the signal branches out and part of it is projected back towards the forehead. The measurements show how the electric impulses change along this pathway. "In the back part of the temporal lobe, where the earlier processing steps take place, there are hardly any differences between consciously and unconsciously processed images", says Dr. Reber. "The distinction of 'conscious' and 'unconscious' follows significantly further down the processing stream than many researchers have been suspecting: On their way to the frontal areas of the temporal lobe, the impulses in response to unconsciously perceived images weaken, and they occur with an increasing delay."

The eye registers an image and generates a corresponding signal. However, in some cases this signal seems to be "disintegrating" before reaching the viewer's consciousness, in this case resulting in the patient not perceiving the image. "It is remarkable," says Reber, "We can show that the patient has been presented with a certain image -- even if they have no conscious perception of it." This basic research paper provides new insights on the border between conscious and unconscious perception.
-end-
Publication: Thomas P. Reber, Jennifer Faber, Johannes Niediek, Jan Boström, Christian E. Elger, Florian Mormann: Single-neuron correlates of conscious perception in the human medial temporal lobe; Current Biology; DOI: 10.1016/j.cub.2017.08.025

Contact:

Prof. Dr. Dr. Florian Mormann
Klinik für Epileptologie
Universitätsklinikum Bonn
Tel. 0228/28715738
eMail: fmormann@yahoo.de

Dr. Thomas Reber
Klinik für Epileptologie
Universitätsklinikum Bonn
Tel. 0228/28715742
eMail: treber@live.com

University of Bonn

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...