A fresh sense of possibility

September 22, 2020

Harsh environments that are inhospitable to existing technologies could now be monitored using sensors based on graphene. An intriguing form of carbon, graphene comprises layers of interconnected hexagonal rings of carbon atoms, a structure that yields unique electronic and physical properties with possibilities for many applications.

"Graphene has been projected as a miracle material for years now, but its application in harsh environmental conditions was unexplored," says Sohail Shaikh, who has developed the new sensors, together with KAUST's Muhammad Hussain.

"Existing sensor technologies operate in a very limited range of environmental conditions, failing or becoming unreliable if there is much deviation," Shaikh adds.

The new robust sensor relies on changes in the electrical resistance of graphene in response to varying temperature, salinity and the acidity of a solution measured as pH. The system has potential to monitor additional variables, including pressure and water flow rates.

The researchers point out that sensing for multiple variables can be incorporated into a single device, greatly increasing its usefulness.

The graphene is transferred onto a flexible sheet of polyimide polymer, and it can be connected to appropriate electronic systems to collect and transmit the signals for whichever environmental variable is being monitored. The data could be transmitted wirelessly using standard Bluetooth technology.

The greatest practical advance is in the resilience of the system that allows it to tolerate temperatures as high as 650 degrees Celsius, high salinity, varying pressure, intense radiation, reactive chemicals, high humidity or any combination of these conditions. The sensors can also offer advantages in sensitivity, for example, achieving a 260 percent sensitivity increase in temperature sensing relative to an existing alternative.

As Hussain explains: "Our study is the first to show decisively the prospects of graphene as a sensing material for a variety of harsh environmental conditions."

Likely real-world applications include monitoring conditions in ocean water, body fluids, the oil and gas industry, space exploration, and many situations involving exposure to chemicals that would damage existing sensors.

The sensor's thin structure and flexibility also makes it suitable for use in wearable technologies for divers and athletes, or in medical applications.

The researchers believe that continual developments linking electronic devices with Internet of Things (IoT) and Internet of Everything (IoE) technologies will bring many needs and opportunities for their robust and flexible sensors.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.