Dresden physicists develop printable organic transistors

September 22, 2020

High-definition roll-up televisions or foldable smartphones may soon no longer be unaffordable luxury goods that can be admired at international electronics trade fairs. High-performance organic transistors are a key necessity for the mechanically flexible electronic circuits required for these applications. However, conventional horizontal organic thin-film transistors are very slow due to the hopping-transport in organic semiconductors, so they cannot be used for applications requiring high frequencies. Especially for logic circuits with low power consumption, such as those used for Radio Frequency Identification (RFID), it is mandatory to develop transistors enabling high operation frequency as well as adjustable device characteristics (i.e., threshold-voltage). The research group Organic Devices and Systems (ODS) at the Dresden Integrated Center for Applied Photophysics (IAPP) of the Institute of Applied Physics headed by Dr. Hans Kleemann has now succeeded in realizing such novel organic devices.

„Up to now, vertical organic transistors have been seen as lab curiosities which were thought too difficult to be integrated in an electronic circuit. However, as shown in our publication, vertical organic transistors with two independent control electrodes are perfectly suited to realize complex logic circuits while keeping the main benefit of vertical transistors devices, namely the high switching frequency", says Dr. Hans Kleemann.

The vertical organic transistors with two independent control electrodes are characterized by a high switching frequency (a few nanoseconds) and an adjustable threshold voltage. Thanks to these developments, even single transistors can be used to represent different logical states (AND, NOT, NAND). Furthermore, the adjustable threshold voltage ensures signal integrity (noise margin) and low power consumption.

With this, the research group has set a milestone with regard to the vision of flexible and printable electronics. In the future, these transistors could make it possible to realize even sophisticated electronic functions such as wireless communication (RFID) or high-resolution flexible displays completely with organic components, thus completely dispensing with silicon-based electronic components.
-end-


Technische Universität Dresden

Related Transistors Articles from Brightsurf:

Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics
Researchers at Los Alamos National Laboratory and their collaborators from the University of California, Irvine have created fundamental electronic building blocks out of tiny structures known as quantum dots and used them to assemble functional logic circuits.

Modeling organic-field effect transistors with a molecular resolution
Organic field-effect transistors represent a promising type of organic electronic device with applications including (bio)sensors, electrical circuits, or data storage.

Printing organic transistors
Researchers successfully print and demonstrate organic transistors, electronic switches, which can operate close to their theoretical speed limits.

All-2D light-emitting field-effect transistors
All-2D light-emitting field-effect transistors.

Dresden physicists develop printable organic transistors
Scientists at the Institute of Applied Physics at TU Dresden have come a step closer to the vision of a broad application of flexible, printable electronics.

Peel-apart surfaces drive transistors to the ledge
Surfaces featuring atomic-scale ledges and steps can act as reusable templates for producing nanoelectronic components.

2D materials for ultrascaled field-effect transistors
Since the discovery of graphene, two-dimensional materials have been the focus of materials research.

Carbon nanotube transistors make the leap from lab to factory floor
A technique for making carbon nanotube transistors in large quantities paves the way for more energy efficient, 3D microprocessors.

NIST scientists create new recipe for single-atom transistors
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues at the University of Maryland have developed a step-by-step recipe to produce single-atom transistors.

Researchers demonstrate a platform for future optical transistors
Photons do not interact with each other well, which creates a big problem for microelectronics engineers.

Read More: Transistors News and Transistors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.