Nav: Home

Underground connection

September 22, 2020

Topographically sketched catchment areas are a spatial unit based on the shapes of the earth's surface. They show how human activities and climate change influence the available quantities of water. Knowledge of these units is fundamental to sustainable water management. However, due to underground connections, some catchment areas accumulate water from areas beyond their topographic boundaries, while others are effectively much smaller than their surface topography would suggest. Currently, most hydrological modelling strategies do not take these groundwater connections into account, but assume that the catchments are independent of their surroundings. For this reason, Dr. Yan Liu and Assistant Professor Dr. Andreas Hartmann from the Chair of Hydrological Modeling and Water Resources at the University of Freiburg, together with a team of researchers from the University of Bristol in England and Princeton University in the US, have introduced the Effective Catchment Index (ECI). Using this new metric, they were able to determine how topographic and actual catchment areas differ when analyzing a global data set. The team recently published the results in the journal Environmental Research Letters.

Using the ECI, the team led by Liu and Hartmann was able to demonstrate that the assumption of a closed water balance, i.e. that the level of a river changes only through precipitation and evaporation from its topographic area, for example, does not apply to a considerable number of catchments around the world. Every third catchment studied has an effective catchment area that is even greater than twice or less than half its topographical area. The scientists recognized that these areas influence or are influenced outside their topographical boundaries by water management activities such as pumping groundwater and, for example, deforestation or reforestation.

With their analysis, the researchers show that the ECI they have redefined is suitable for investigating how drought can spread across topographical boundaries as a result of water exchange. It can also be used in the analysis of the effects of climate and land use changes on cross-boundary water exchange. "This is how we have seen where we need to further investigate underground networks across topographical boundaries in order to support sustainable water management," says Hartmann.
-end-
This research is funded by the Emmy-Noether-Program of the German Research Foundation (DFG) within Andreas Hartmann's project "Global Assessment of Water Stress in Karst Regions in a Changing World." The Global Runoff Data Centre (GRDC) provided parts of the flow data for the global catchment area data set.

Original publication:

Liu, Y., Wagener, T., Beck, H.E., Hartmann, A. (2020): What is the hydrologically effective area of a catchment? In: Environmental Research Letters. DOI: 10.1088/1748-9326/aba7e5
https://iopscience.iop.org/article/10.1088/1748-9326/aba7e5

Website of the team
https://www.hydmod.uni-freiburg.de/

Contact:

Dr. Yan Liu and Juniorprofessor Dr. Andreas Hartmann
Chair of Hydrological Modeling and Water Resources
Faculty of Environment and Natural Resources
University of FreiburgTel.: 0761/203-69247 und -3520
E-Mail: yan.liu@hydmod.uni-freiburg.deandreas.hartmann@hydmod.uni-freiburg.de

University of Freiburg

Related Climate Articles:

Climate Insights 2020: Climate opinions unchanged by pandemic, but increasingly entrenched
A new survey provides a snapshot of American opinion on climate change as the nation's public health, economy, and social identity are put to the test.
Climate action goes digital
More transparent and accessible to everyone: information and communication technologies bring opportunities for transforming traditional climate diplomacy.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
How trees could save the climate
Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions.
Climate undermined by lobbying
For all the evidence that the benefits of reducing greenhouse gases outweigh the costs of regulation, disturbingly few domestic climate change policies have been enacted around the world so far.
Climate education for kids increases climate concerns for parents
A new study from North Carolina State University finds that educating children about climate change increases their parents' concerns about climate change.
Inclusion of a crop model in a climate model to promote climate modeling
A new crop-climate model provides a good tool to investigate the relationship between crop development and climate change for global change studies.
More Climate News and Climate Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.