How night vision is maintained during retinal degenerative disease

September 22, 2020

New insight on how people with retinal degenerative disease can maintain their night vision for a relatively long period of time has been published today in the open-access eLife journal.

The study in mice suggests that second-order neurons in the retina, which relay visual signals to the retinal ganglion cells that project into the brain, maintain their activity in response to photoreceptor degeneration to resist visual decline - a process known as homeostatic plasticity. Rod photoreceptors are the cells responsible for the most sensitive aspects of our vision, allowing us to see at night, but can be lost during retinal degenerative disease.

The new findings pave the way for further research to understand how our eyes and other sensory systems respond and adapt to potentially compromising changes throughout life.

"Neuronal plasticity of the inner retina has previously been seen to occur in response to photoreceptor degeneration, but this process has been mostly considered maladaptive rather than homeostatic in nature," explains co-first author Henri Leinonen, a postdoctoral researcher at the University of California, Irvine, US. "Our study was conducted at a relatively early stage of disease progression, while most previous studies focused on severe disease stages, which may account for the discrepancy. Very recently, several studies using triggered photoreceptor loss models have shown adaptive responses in bipolar cells - cells that connect the outer and inner retina. But whether such adaptation occurs during progressive photoreceptor degenerative disease, and whether it helps to maintain visual behaviour, was unknown."

To address this question, Leinonen and colleagues studied a mouse model of retinitis pigmentosa. This is the name given to a group of related genetic disorders caused by the P23H mutation in rhodopsin, a protein that enables us to see in low-light conditions. Retinitis pigmentosa causes the breakdown and loss of rod-shaped photoreceptor cells in the retina, leading to difficulties seeing at night.

The team combined whole-retinal RNA-sequencing, electrophysiology and behavioral experiments in both healthy mice and those with retinitis pigmentosa as the disease progressed. Their experiments showed that the degeneration of rod photoreceptors triggers genomic changes that involve robust compensatory molecular changes in the retina and increases in electrical signalling between rod photoreceptors and rod bipolar cells. These changes were associated with well-maintained behavioural night vision despite the loss of over half of the rod photoreceptor cells in mice with retinitis pigmentosa.

"This mechanism may explain why patients with inherited retinal diseases can maintain their normal vision until the disease reaches a relatively advanced state," says co-first author Nguyen Pham, Graduate Research Assistant at the John A. Moran Eye Center, University of Utah Health, Salt Lake City, US. "It could also inspire novel treatment strategies for diseases that lead to blindness."

"Our results suggest retinal adaptation as the driver of persistent visual function during photoreceptor degenerative disease," concludes senior author Frans Vinberg, PhD, Assistant Professor at the John A. Moran Eye Center, University of Utah Health. "Additional research is now needed to discover the exact homeostatic plasticity mechanisms that promote cellular signalling and visual function. This could help inform the development of potential new interventions to enhance homeostatic plasticity when needed."
-end-
Reference

The paper 'Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease' can be freely accessed online at https://doi.org/10.7554/eLife.59422. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Media Relations Manager
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Neuroscience, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Neuroscience research published in eLife, visit https://elifesciences.org/subjects/neuroscience.

About the John A. Moran Eye Center

The John A. Moran Eye Center at the University of Utah serves as the largest ophthalmology clinical care and research facility in the United States Mountain West with more than 60 faculty members and 10 satellite clinics. Physicians provide comprehensive care in nearly all ophthalmic subspecialties with over 150,000 patient visits and about 7,000 surgeries annually. Moran supports 15 research laboratories and one of the nation's most highly regarded academic programs. U.S. News & World Report ranks Moran among its Best Hospitals for Ophthalmology, while Ophthalmology Times surveys evaluating residency programs, clinical care, and research rank Moran in the nation's top 10. CEO Randall J Olson, MD, leads more than 500 employees working to achieve Moran's vision that no person with a blinding condition, eye disease, or visual impairment should be without hope, understanding, and treatment.

eLife

Related Retinitis Pigmentosa Articles from Brightsurf:

How night vision is maintained during retinal degenerative disease
New insight on how people with retinal degenerative disease can maintain their night vision for a relatively long period of time has been published today in the open-access eLife journal.

Gene therapy: Novel targets come into view
Retinitis pigmentosa is the most prevalent form of congenital blindness.

KIST finds clue to improve artificial vision for patients with retinitis pigmentosa
A Korean research team has reported important findings that could potentially improve the performance of retinal prostheses creating artificial vision for blind individuals.

Retinitis pigmentosa research probes role of the enzyme DHDDS in this genetic disease
Researchers who made a knock-in mouse-model of the genetic disorder retinitis pigmentosa 59, or RP59, expected to see retinal degeneration and retinal thinning.

Avatar worms help to identify factors that modify genetic diseases
C. elegans worms were genetically edited by CRISPR to introduce human mutations that cause retinitis pigmentaria.

Researchers discover molecular light switch in photoreceptor cells
Transducin, a protein found inside photoreceptor cells in vertebrate eyes, alters its cellular location in response to changes in light intensity, allowing our eyes to adapt to the changes.

Augmented reality glasses may help people with low vision better navigate their environment
In a new study of patients with retinitis pigmentosa, an inherited degenerative eye disease that results in poor vision, Keck School of Medicine of USC researchers found that adapted augmented reality glasses can improve patients' mobility by 50% and grasp performance by 70%.

Immune system can slow degenerative eye disease, NIH-led mouse study shows
A new study shows that the complement system, part of the innate immune system, plays a protective role to slow retinal degeneration in a mouse model of retinitis pigmentosa, an inherited eye disease.

Retinal prion disease study redefines role for brain cells
National Institutes of Health scientists studying the progression of inherited and infectious eye diseases that can cause blindness have found that microglia, a type of nervous system cell suspected to cause retinal damage, surprisingly had no damaging role during prion disease in mice.

Therapy could improve and prolong sight in those suffering vision loss
Ganglion cells in the eye generate noise as the light-sensitive photoreceptors die in diseases such as retinitis pigmentosa.

Read More: Retinitis Pigmentosa News and Retinitis Pigmentosa Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.