Climate change: 50 years past and possible futures

September 23, 2002

A new NASA-funded study used a computer climate model to simulate the last 50 years of climate changes, projects warming over the next 50 years regardless of whether or not nations curb their greenhouse gas (GHG) emissions soon. If no emission reductions are made and they continue to increase at the current rate, global temperatures may increase by 1-2° Celsius (1.8°-3.6° Fahrenheit). But if the growth rate of carbon dioxide does not exceed its current rate and if the growth of true air pollutants (things that are harmful to human health) is reversed, temperatures may rise by only 0.75C (1.35F).

"Some continued global warming will occur, probably about 0.5C (0.9F) even if the greenhouse gases in the air do not increase further, but the warming could be much less than the worst case scenarios," said Jim Hansen, lead researcher on the study from NASA's Goddard Institute for Space Studies (GISS), N.Y. This research was a collaborative effort of 19 institutions, including 7 universities, federal agencies, private industry and other NASA centers.

The GISS "SI2000" climate model provided a convincing demonstration that global temperature change of the past half-century is mainly a response to climate forcing agents, or imposed perturbations of the Earth's energy balance. This is especially true of human-made forcings, such as carbon dioxide and methane, which trap the Earth's heat radiation as a blanket traps body heat; thus they cause warming.

The computer model's ability to simulate the past 50 years of global temperature change provided confidence in understanding the causes behind climate changes that have occurred over that time period. The sensitivity of the "SI2000" model to a climate forcing is comparable to that of other climate computer models. Model results from 1951-2000 are in close agreement with observed changes; the surface has warmed by about .5°C (0.9°F) while the upper atmosphere (10-15 mile altitudes) has cooled by about 1°C (1.8°F).

The climate model was then used to simulate global temperature change during the next 50 years, under two contrasting assumptions for future growth of human-made forcings.

The first assumption for the emissions of GHGs is the "business-as-usual" scenario where GHGs continue to increase rapidly. This scenario leads to an accelerating rate of global warming, raising global temperature to levels that have not existed during the past several hundred thousand years.

In the "alternative" scenario, in which air pollution is decreased and fossil fuel CO2 emissions are stabilized, further global warming is limited to 0.75°C (1.35°F) in the next 50 years. Hansen cautioned that the 'alternative' scenario will not be easy to achieve. It requires that the world begin to reverse the growth of true air pollution (especially 'soot' and the gases that control surface ozone, including methane) and also that we flatten out and eventually begin to decrease CO2 emissions.

The climate forcing agents that Hansen and his co-authors include in their climate simulations are: (1) long-lived greenhouse gases such as carbon dioxide, methane and the chlorofluorocarbons; (2) stratospheric aerosols (fine particles) from volcanic eruptions; (3) variations in the Sun's energy indicated by sunspots; (4) ozone changes - both at the surface (a pollutant) and upper atmosphere (protects from the Sun's ultraviolet rays); (5) stratospheric water vapor and; (6) tropospheric air pollution aerosols, including black and organic carbon (soot) and sulfates.

Achievement of stable CO2 emissions, as required in the alternative scenario that yields minimal climate change, it is likely to require some combination of increased energy efficiencies, a growing role for renewable energies, capture and sequestration of CO2 emissions, and/or increased use of nuclear power. All of these possibilities are being addressed by the National Climate Change Technology Initiative.

"Decision-makers, including the public, may need to consider all of these options as climate change becomes more apparent and as our understanding of the climate forcing agents improves," Hansen said. "Halting and reversing the growth of air pollution is possible with existing and developing technologies. It would have other benefits, especially for human health and agricultural productivity."
This research was funded by NASA, and appears in the next issue of the Journal of Geophysical Research--Atmospheres.

NASA/Goddard Space Flight Center

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to