Nature shows the way

September 23, 2011

A hole in an inflatable boat is only a disaster if the air escapes too quickly to reach the safety of land. It's somewhat less dramatic but nonetheless uncomfortable to spend the night on a leaky air mattress. Even in this case, though, you can get some uninterrupted sleep if only the air leaks out slowly enough. In future, self-repairing layers of porous material should ensure that the membranes of inflatable objects are not only water and airtight but also that they can plug up any holes on their own, at least temporarily.

The idea behind this comes from nature. Bionics experts keep on discovering amazing principles of construction which engineers can adopt for countless technical solutions. This is also the case with self-repairing materials. The self-healing process of the pipevine (Aristolochia macrophylla), a liana which grows in the mountain forests of North America, gave the biologists at the University of Freiburg, Germany, a decisive clue. When the lignified cells of the outer supportive tissues which give the plant its bending stiffness are damaged, the plant administers «first aid» to the wound. Parenchymal cells from the underlying base tissue expand suddenly and close the lesion from inside. Only in a later phase does the real healing process kick in and the original tissue grows back.

Self-healing inflatable structures

This principle is now being transferred to materials - more specifically, to membranes - in a bionics project sponsored by the German Federal Ministry of Education and Research. As soon as a membrane suffers damage, an additional layer provides "first aid", thanks to its mechanical pre-tensioning, closing the hole until a proper repair can be made. This is analogous to the natural process which occurs in lianas. While researchers from the University of Freiburg under the direction of Olga Speck are busy studying the biological and chemical aspects of the model provided by liana plants, Rolf Luchsinger and Markus Rampf at Empa's Center for Synergetic Structures are working on technical solutions for polymer membranes. Luchsinger's impetus, however, concerns neither inflatable boats nor air mat-tresses but rather load-carrying pneumatic structures for lightweight construction. His tensairity beams serve as elements for quickly erected, lightweight bridges and roofing.

The study's goal is to understand under which conditions a hole plugs itself up if the foam expands on a membrane following damage. Within the scope of his dissertation, Rampf is studying this process with the help of an experimental setup which places a membrane under pneumatic pressure and then punctures it with a nail. The researchers have already achieved successful interim results. A two-component foam of polyurethane and polyester suddenly expands when exposed to the excessive pressure which arises when air rushes out of a hole.

«It works in the lab,» notes Luchsinger, «and we're achieving high repair factors.» What does this mean in the real world? Take the case of an air mattress with a volume of 200 litres. Given a certain-sized hole, previously it was necessary to pump it up every five minutes; it now holds for eight hours - enough time to sleep through the night. «We now know enough about the foam that we can enter into discussions with membrane manufacturers about commercializing this technology,» according to Luchsinger, when describing the next steps.
-end-
Literature reference
M. Rampf, O. Speck, T. Speck, R. Luchsinger, Self-Repairing Membranes for Inflatable Structures Inspired by a Rapid Wound Sealing Process of Climbing Plants, Journal of Bionic Engineering, 8 (2011) 242-250, doi: 10.1016/S1672-6529(11)60028-0

Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Related Membrane Articles from Brightsurf:

A biomimetic membrane for desalinating seawater on an industrial scale
Reverse osmosis is one of the most widely used techniques for the desalination of water.

Lighting the way to selective membrane imaging
A team of scientists at Kanazawa University have shown how water-soluble tetraphenylethene molecules can become fluorescent when aggregating at a biomembrane-mimetic liquid-liquid interface.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

Using light's properties to indirectly see inside a cell membrane
Using properties of light from fluorescent probes is at the heart of a new imaging technique developed at Washington University's McKelvey School of Engineering that allows for an unprecedented look inside cell membranes.

Cells relax their membrane to control protein sorting
The tension in the membrane of cells plays an important role in a number of biological processes.

How are misfolded membrane proteins cleared from cells by "reubiquitinase"?
Chinese researchers recently discovered a protein quality control mechanism called ''reubiquitination'', which could promote the elimination of misfolded membrane proteins, minimize their dwell time in cells, and thereby reduce their probability to form toxic aggregates in human body.

Across the cell membrane
Aquaporins and glucose transporters facilitate the movement of substances across biological membranes and are present in all kingdoms of life.

First simulation of a full-sized mitochondrial membrane
Scientists from the University of Groningen have developed a method that combines different resolution levels in a computer simulation of biological membranes.

New self-forming membrane to protect our environment
A new class of self-forming membrane has been developed by researchers from Newcastle University, UK.

Cell membrane proteins imaged in 3D
A team of scientists including researchers at the National Synchrotron Light Source II have demonstrated a new technique for imaging proteins in 3D with nanoscale resolution.

Read More: Membrane News and Membrane Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.