Nav: Home

A new way to turn heat into energy

September 23, 2019

COLUMBUS, Ohio -- An international team of scientists has figured out how to capture heat and turn it into electricity.

The discovery, published last week in the journal Science Advances, could create more efficient energy generation from heat in things like car exhaust, interplanetary space probes and industrial processes.

"Because of this discovery, we should be able to make more electrical energy out of heat than we do today," said study co-author Joseph Heremans, professor of mechanical and aerospace engineering and Ohio Eminent Scholar in Nanotechnology at The Ohio State University. "It's something that, until now, nobody thought was possible."

The discovery is based on tiny particles called paramagnons--bits that are not quite magnets, but that carry some magnetic flux. This is important, because magnets, when heated, lose their magnetic force and become what is called paramagnetic. A flux of magnetism--what scientists call "spins"--creates a type of energy called magnon-drag thermoelectricity, something that, until this discovery, could not be used to collect energy at room temperature.

"The conventional wisdom was once that, if you have a paramagnet and you heat it up, nothing happens," Heremans said. "And we found that that is not true. What we found is a new way of designing thermoelectric semiconductors--materials that convert heat to electricity. Conventional thermoelectrics that we've had over the last 20 years or so are too inefficient and give us too little energy, so they are not really in widespread use. This changes that understanding."

Magnets are a crucial part of collecting energy from heat: When one side of a magnet is heated, the other side--the cold side--gets more magnetic, producing spin, which pushes the electrons in the magnet and creates electricity.

The paradox, though, is that when magnets get heated up, they lose most of their magnetic properties, turning them into paramagnets--"almost-but-not-quite magnets," Heremans calls them. That means that, until this discovery, nobody thought of using paramagnets to harvest heat because scientists thought paramagnets weren't capable of collecting energy.

What the research team found, though, is that the paramagnons push the electrons only for a billionth of a millionth of a second--long enough to make paramagnets viable energy-harvesters.

The research team--an international group of scientists from Ohio State, North Carolina State University and the Chinese Academy of Sciences (all are equal authors on this journal article)--started testing paramagnons to see if they could, under the right circumstances, produce the necessary spin.

What they found, Heremans said, is that paramagnons do, in fact, produce the kind of spin that pushes electrons.

And that, he said, could make it possible to collect energy.
-end-
Ohio State graduate student Yuanhua Zheng is also an author on this work. The research was conducted in partnership with additional researchers at the U.S. Department of Energy's Oak Ridge National Laboratory and was supported by the National Science Foundation, the Air Force Office of Scientific Research and the U.S. Department of Energy.

Contact:

Joseph Heremans, heremans.1@osu.edu

Written by:

Laura Arenschield, arenschield.2@osu.edu; 614-292-9475

Ohio State University

Related Magnets Articles:

Magnets for the second dimension
ETH Zurich scientists have developed cube-shaped magnetic building blocks that can be assembled into two-dimensional shapes and controlled by an external magnetic field.
Newly created magnets are cheaper, more effective and 'smarter'
Ferromagnets, or more precisely, magnets -- are extremely demanded materials in modern electronics.
Small magnets reveal big secrets
An international research team led by a physicist at the University of California, Riverside, has identified a microscopic process of electron spin dynamics in nanoparticles that could impact the design of applications in medicine, quantum computation, and spintronics.
How do the strongest magnets in the universe form?
How do some neutron stars become the strongest magnets in the Universe?
Scientists discover potential path to improving samarium-cobalt magnets
Scientists have discovered a potential tool to enhance magnetization and magnetic anisotropy, making it possible to improve the performance of samarium-cobalt magnets.
Next step in producing magnetic organic molecules
A team from the Ruhr Explores Solvation Cluster of Excellence at Ruhr-Universität Bochum has created new molecules with magnetic properties.
Rice U. lab grows stable, ultrathin magnets
Rice University researchers find a simple method to make unique, nearly two-dimensional iron oxides with stable magnetic properties at room temperature.
Magnets can help AI get closer to the efficiency of the human brain
Purdue University researchers have developed a process to use magnetics with brain-like networks to program and teach devices such as personal robots, self-driving cars and drones to better generalize about different objects.
Unprecedented insight into two-dimensional magnets using diamond quantum sensors
For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale.
Lasers make magnets behave like fluids
Researchers have discovered how magnets recover after being blasted by a laser.
More Magnets News and Magnets Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.