Nav: Home

Engineering the meniscus

September 23, 2019

New Rochelle, NY, September 23, 2019-Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions. Now, researchers have reported a new method that may help by growing meniscal cells on 3D electrospun nanofiber scaffolds. Their work is published in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the article for free on the Tissue Engineering website through October 23, 2019.

Darryl D. D'Lima, MD, PhD, Shiley Center for Orthopaedic Research at Scripps Clinic, La Jolla, CA, with colleagues from Scripps Clinic and Scripps Research Institute, present their work in an article titled "Core-Shell Nanofibrous Scaffolds for Repair of Meniscus Tears". The authors created a core-shell scaffold material by the co-axial electrospinning of a polylactic acid core with a collagen shell, seeded it with meniscal cells, and monitored tissue development based on gene expression and histology. These constructs were used to repair tears in meniscal explants and showed good integration.

"Meniscal injuries in the avascular region can be notoriously difficult to treat," says Tissue Engineering Co-Editor-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX. "The ex vivo tissue repair results from this article demonstrate the therapeutic promise of the co-axial electrospinning strategy, potentially altering the treatment paradigm for such injuries."
-end-
About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Leadership of Tissue Engineering Parts B (Reviews) and Part C (Methods) is provided by Katja Schenke-Layland, PhD, Eberhard Karls University, Tübingen, Heungsoo Shin, PhD, Hanyang University; and John A. Jansen, DDS, PhD, Radboud University, and Xiumei Wang, PhD, Tsinghua University respectively. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Tissue Engineering Articles:

Plant tissue engineering improves drought and salinity tolerance
After several years of experimentation, scientists have engineered thale cress, or Arabidopsis thaliana, to behave like a succulent, improving water-use efficiency, salinity tolerance and reducing the effects of drought.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Biofabrication drives tissue engineering in 2019
In the quest to engineer replacement tissues and organs for improving human health, biofabrication has emerged as a crucial set of technologies that enable the control of precise architecture and organization.
Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.
Combined tissue engineering provides new hope for spinal disc herniations
A promising new tissue engineering approach may one day improve outcomes for patients who have undergone discectomy -- the primary surgical remedy for spinal disc herniations.
Tissue engineering: The big picture on growing small intestines
CHLA surgeon Dr. Tracy Grikscheit and colleagues describe how stem cell therapies could help babies with severe intestinal issues.
Scientists use molecular tethers, chemical 'light sabers' for tissue engineering
Researchers at the University of Washington unveiled a new strategy to keep proteins intact and functional in synthetic biomaterials for tissue engineering.
UCI engineers aim to pioneer tissue-engineering approach to TMJ disorders
Here's something to chew on: One in four people are impacted by defects of the temporomandibular - or jaw - joint.
Scientists develop a cellulose biosensor material for advanced tissue engineering
I.M. Sechenov First Moscow State Medical University teamed up together with Irish colleagues to develop a new imaging approach for tissue engineering.
The use of electrospun scaffolds in musculoskeletal tissue engineering
Rotator Cuff tears affect 15 percent of 60 year olds and carry a significant social and financial burden.
More Tissue Engineering News and Tissue Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.