KIST develops ambient vibration energy harvester with automatic resonance tuning mechanism

September 23, 2020

Korean researchers have developed an energy harvester that can generate electric power from ambient vibrations with diverse frequencies through a novel automatic resonance tuning mechanism. It was recently announced by the Korea Institute of Science and Technology (KIST) that a research team led by Dr. Hyun-Cheol Song from the KIST Center for Electronic Materials developed an energy harvester that can perform automatic resonance tuning (ART) by adjusting the natural frequency by itself in adapting to the environmental conditions.

Energy harvesting technology is applied to "harvest" electrical energy from dumped energy sources around us, such as vibration, heat, light, and so on. A device that is capable of harvesting energy from its surroundings can generate power on its own, without needing any batteries or being connected to a power outlet. This technology is especially useful to an stand-alone power source for small electronic devices that operate wirelessly, like an IoT system.

Vibrations generated by automobiles, trains, industrial sites and so on can be used to produce electric energy with energy harvesting technology, but for any real-life applications, there must be a way to produce and store as much electric energy as possible from small vibrations. To do this, it is necessary to take advantage of the resonance phenomenon in which the glass is shattered by high-pitched sounds or a large bridge is collapsed by a breeze.

However, an energy harvester has a single natural frequency, yet the vibrations we find in our surroundings occur in a wide range of different frequencies. This is why an energy harvester must be tuned according to the environment where it is installed so as to induce resonance, and this has caused limitations to use energy harvesters.

In order to address this issue, self-tuning energy harvesters that use a motor or a microcontroller have been developed, but they presented problems in that the power generation efficiency was greatly reduced as a result of high energy consumption by the tuning motor or the controller.

Researchers at KIST instead developed an energy harvester with a special structure capable of tuning itself to the surrounding frequency without a separate electrical device. There is a proof mass that moves autonomously inside the energy harvester, and when vibration in the surroundings is detected, the weight moves to a different location according to the vibration frequency. The energy harvester thus gains the same frequency as that of the external vibration and achieves resonance. As a result, the range of frequencies where resonance can be achieved by the energy harvester developed by KIST researchers is 1,400% greater than that of existing devices that have a single natural frequency.

Dr. Hyun-Cheol Song who led this research team said, "The significance of this study is that we were the first to implement an energy harvester that has a simple structure and can perform self-tuning without additional energy consumption. It is expected to greatly speed up the real-life application of energy harvesters.", "I believe that self-tuning energy harvesters will play a key role on a stand-alone power source for wireless sensor networks, wearable electronic devices and the Internet of Things, which is one of the core technologies of the Fourth Industrial Revolution."
-end-
This research project was executed with a grant from the Ministry of Science and ICT (MSIT), as part of the Institutional R&D Program of KIST and the Mid-Career Researcher Grant Program. The results were published in the latest edition of Nano Energy (IF: 16.602, top 4.088% in the field of JCR), an international journal in the field of energy.

National Research Council of Science & Technology

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.