Generational shifts help migratory bats keep pace with global warming

September 23, 2020

Many animal species are currently changing their distribution range owing to global warming. The underlying mechanisms are still little known, especially in mammals. An international team of scientists led by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) has now demonstrated that in the common noctule bat, one of the largest European bat species, the colonization of hibernacula progresses from lower to higher latitudes over successive generations of young animals - especially first-year males. Because of their relatively high reproduction rate and the long-distance dispersal of male juveniles, it is probably relatively easy for common noctules to adjust to global warming. For species with lower reproduction rates and a limited migratory potential of the young - the majority of European bat species - the future might not look as favourable when facing continuing global warming. The paper was published in the scientific journal "Biology Letters".

The rapid pace of global warming is forcing animals to adjust their lives to ensure their survival and successful reproduction. Highly mobile species such as migratory bats could potentially shift their summer and wintering habitats to higher or lower latitudes according to how the regional climate is changing. This flexibility could enable migratory bats to stay within ideal conditions for reproducing and rearing of young or for hibernation. For example, in recent years common noctule bats have shifted their wintering area further north. Is this shift in the wintering range the consequence of adult bats moving further north for hibernation year after year, or are these shifts done by juvenile bats from successive generations? Scientists of the Leibniz-IZW and partners from the Ukraine - the "Bat Rehabilitation Center of Feldman Ecopark" and the "Ukrainian Independent Ecology Institute" - addressed this question in a long-term study.

"We showed that the northwards move of the hibernation area of the common noctule occurs over several generations of juveniles", says Christian Voigt, head of the Department of Evolutionary Ecology at Leibniz-IZW. "Especially young males, which usually migrate further from their birthplace than young females, are leading the way when colonising new hibernacula". Since common noctules have a short life span, a high reproduction rate and can disperse over long distances, they may be able to adjust relatively quickly to global warming, even if the wintering area only successively changes from generation to generation.

The investigation was carried out in the city of Kharkiv in northern Ukraine. Maternity colonies of common noctule females were long recorded north of the Kharkiv area, with hibernating animals moving to areas well south of Kharkiv. Then, 30 years ago the first individuals were encountered who hibernated further north close to Kharkiv, with increasing numbers of hibernating bats nearby since then. Over a ten-year period, the scientists collected data on the age and sex of almost 3,400 individuals. These data showed that young males dominated the early phase of colonisation of the new hibernation area. Gradually, the ratio of males to females and of young to adult animals became more balanced. "We also investigated the region of origin of the hibernating common noctules by analysing stable hydrogen isotopes in the fur keratin", says Kseniia Kravchenko from Leibniz-IZW, the first author of the paper. "The data of nearly 400 animals revealed that the number of long-distance migrants decreased in both females and males across all age groups". This showed that in the early years of colonisation the hibernation population originated from summer quarters in the far north. More recently, the "local" population with summer quarters nearby, who previously had flown further south for hibernation, increasingly used the same area as their summer quarters for reproduction and for wintering.

The rapid generational shift and the high dispersal capacity of young males seem to be an evolutionary advantage of common noctule bats in times of climate change, the authors conclude. "Mammal species with higher life expectancies, lower reproductive rate and lower dispersal capacity may have a much harder time in keeping up with the pace of global warming", suspect Kravchenko and Voigt. "If the distribution areas of these species only shift from generation to generation, the pace may be too slow and there is a chance that they will become extinct if global warming continues at the current high pace." Further research will be necessary to understand these mechanisms of spatial adjustment to climate change in other mammalian species.
-end-


Forschungsverbund Berlin

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.