Nav: Home

Flood risks: More accurate data due to COVID-19

September 23, 2020

Emerging use of Global Navigation Satellite System (GNSS) makes it possible to continuously measure shallow changes in elevation of Earth surface. A study by the University of Bonn now shows that the quality of these measurements may have improved significantly during the pandemic, at least at some stations. The results show which factors should be considered in the future when installing GPS antennas. More precise geodetic data are important for assessing flood risks and for improving earthquake early warning systems. The journal Geophysical Research Letters now reports on this.

A number of countries went into politically decreed late hibernation at the onset of the Covid-19 pandemic. Many of those affected by the lockdown suffered negative economic and social consequences. Geodesy, a branch of the Earth Science to study Earth's gravity field and its shape, on the other hand, has benefited from the drastic reduction in human activity. At least that is what the study now published in the Geophysical Research Letters shows. The study, which was carried out by geodesists from the University of Bonn, investigated the location of a precise GNSS antenna in Boston (Massachusetts) as an example.

GNSS receivers can determine their positions to an accuracy of a few mm. They do this using the US GPS satellites and their Russian counterparts, GLONASS. For some years now, it has also been possible to measure the distance between the antenna and the ground surface using a new method. "This has recently allowed our research group to measure elevation changes in the uppermost of soil layers, without installing additional equipment," explains Dr. Makan Karegar from the Institute of Geodesy and Geoinformation at the University of Bonn. Researchers, for instance, can measure the wave-like propagation of an earthquake and the rise or fall of a coastal area.

The measuring method is based on the fact that the antenna does not only pick up the direct satellite signal. Part of the signal is reflected by the nearby environment and objects and reaches the GNSS antenna with some delays. This reflected part therefore travels a longer path to the antenna. When superimposed on the directly received signal, it forms certain patterns called interference. The can be used to calculate the distance between the antenna and the ground surface which can change over time. To calculate the risk of flooding in low-elevation coastal areas, it is important to know this change - and thus the subsidence of the Earth surface - precisely.

This method works well if the surrounding ground is flat, like the surface of a mirror. "But many GNSS receivers are mounted on buildings in cities or in industrial zones," explains Prof. Dr. Jürgen Kusche. "And they are often surrounded by large parking lots - as is the case with the antenna we investigated in Boston."

Cars cause disturbance

In their analysis, the researchers were able to show that parked cars significantly reduce the quality of the elevation data: Parked vehicles scatter the satellite signal and cause it to be reflected several times before it reaches the antenna, like a cracked mirror. This not only reduces the signal intensity, but also the information that can be extracted from it: It's "noisy." In addition, because the "pattern" of parked cars changes from day to day, these data can not be easily corrected.

"Before the pandemic, measurements of antenna height had an average accuracy of about four centimeters due to the higher level of noise," says Karegar. "During the lockdown, however, there were almost no vehicles parked in the vicinity of the antenna; this improved the accuracy to about two centimeters." A decisive leap: The more reliable the values, the smaller the elevation fluctuations that can be detected in the upper soil layers.

In the past, GNSS stations were preferably installed in sparsely populated regions, but this has changed in recent years. "Precise GNSS sensors are often installed in urban areas to support positioning services for engineering and surveying applications, and eventually for scientific applications such as deformation studies and natural hazards assessment," says Karegar. "Our study recommends that we should try to avoid installation of GNNS sensors next to parking lots."
-end-
Publication: Makan A. Karegar and Jürgen Kusche: Imprints of COVID-19 lockdown on GNSS observations: An initial demonstration using GNSS interferometric reflectometry, Geophysical Research Letters; DOI: 10.1029/2020GL089647

Contact:

Dr. Makan Karegar
Institut für Geodäsie der Universität Bonn
Tel. +49 (0)228/73-6160
E-mail: karegar@uni-bonn.de

University of Bonn

Related Pandemic Articles:

Aortic valve replacement during COVID-19 pandemic
The outcomes associated with deferred compared with expedited aortic valve replacement in patients with severe aortic stenosis during the COVID-19 pandemic are evaluated in this observational study.
Changes in adult alcohol use, consequences during COVID-19 pandemic
Individual-level changes in alcohol use and the consequences associated with alcohol use by US adults from before to during the COVID-19 pandemic are examined in this study.
Sleep challenges during COVID-19 pandemic
How parents can help their children adjust sleep schedules, especially during the COVID-19 pandemic, is discussed in this Patient Page.
Changes in lung cancer treatment during COVID-19 pandemic
Changes in lung cancer treatment during the COVID-19 pandemic were evaluated in this study.
As pandemic progressed, people's perceived risks went up
A recent study documents how personal risk assessment and protective behaviors are linked.
Hoarding and herding during the COVID-19 pandemic
Understanding the psychology behind economic decision-making, and how and why a pandemic might trigger responses such as hoarding, is the focus of a new paper published in the Journal of Behavioral Economics for Policy.
Understanding the psychological aspects of the COVID-19 pandemic
Research at SMU to understand the psychological aspects of COVID-19 points to two main areas: message framing and emotion-regulation.
Corona pandemic: What dashboards do not show
How can the course of the corona pandemic and its effects be illustrated?
How effective does a COVID-19 vaccine need to be to stop the pandemic?
The American Journal of Preventive Medicine, published by Elsevier, is committed to publishing the most robust, evidence-based research and commentary on COVID-19 as they unfold to keep readers up to date and aware of issues relevant to community and individual health during this continually evolving global outbreak.
Media's pivotal pandemic power
The mass media's coverage of the pandemic health crisis carries an important responsibility to offer balanced messaging about COVID-19 and public behaviour, Flinders University public health researchers says.
More Pandemic News and Pandemic Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.