UAlberta researchers pinpoint how iron deposits form

September 23, 2020

University of Alberta scientists have uncovered the formation mechanism behind a class of mineral deposits that have been hotly contested until now. The findings shed new light on how iron deposits, among others, form--and this new understanding can aid geologists in the hunt for more ore.

"Most mineral deposits are formed by circulation of hot water; whereas some are formed by crystallization from a magma," said Matthew Steele-MacInnis, assistant professor in the Department of Earth and Atmospheric Science. "In the case of Iron oxide-apatite deposits, nobody has been able to agree on how they are deposited, but our study now shows they are deposited from a very unusual liquid dominated by calcium carbonate and sulfate."

The substance is a magma in a sense, explains Steele-MacInnis, but an unusual one and a formation process unknown until this study--led by PhD student Wyatt Bain under MacInnis' supervision-- and this context gives geologists new clues to guide the hunt for ore.

"The origins and chemical properties of ore-forming fluids are key parameters that determine whether a mineral deposit will form. In this case, our results show that the fluids that form iron oxide-apatite deposits are sourced by a very particular process: melting of limestones and/or salt deposits by injection of magma," said Steele-MacInnis.

The results can be directly applied in exploration, explains Steele-MacInnis. Geologists looking for iron oxide-apatite deposits should target areas where magmatic rocks have been emplaced into sedimentary basins containing limestones or salt deposits.

And while the findings have the most immediate relevance for the hunt for iron deposits, Steele-MacInnis explains that this new understanding also has implications for some of our most cutting-edge technology.

"Iron oxide-apatite deposits have been mined for some years as sources of iron, which is probably the single most important metal for industrial applications and infrastructure," said Steele-MacInnis. "But in recent years, these deposits have become even more attractive, because they commonly are enriched in key high-tech metals like rare Earth elements, which are critical to green-energy production and electronics."
-end-
The paper, "A fundamental role of carbonate-sulfate melts in the formation of iron oxide-apatite deposits," was published in Nature Geoscience (doi: 10.1038/s41561-020-0635-9).

University of Alberta

Related Magma Articles from Brightsurf:

Magma 'conveyor belt' fuelled world's longest erupting supervolcanoes
International research led by geologists from Curtin University has found that a volcanic province in the Indian Ocean was the world's most continuously active -- erupting for 30 million years -- fuelled by a constantly moving 'conveyor belt' of magma.

Deep magma facilitates the movement of tectonic plates
A small amount of molten rock located under tectonic plates encourages them to move.

3D magnetotelluric imaging reveals magma recharging beneath Weishan volcano
Researches have succeeded in obtaining a high-resolution 3D resistivity model of approximately 20 km depth beneath the Weishan volcano in the Wudalianchi volcanic field (WVF) for the first time.

Study proves that magma chambers can be totally molten
The paper shows that basaltic magma chambers may develop as large bodies of crystal-free melts in the Earth's crust.

New study takes the pulse of a sleeping supervolcano
Under the volcanoes in the Andes where Chile, Argentina and Bolivia meet, there is a gigantic reservoir of molten magma.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Research shows why there's a 'sweet spot' depth for underground magma chambers
Computer models show why eruptive magma chambers tend to reside between six and 10 kilometers underground.

'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.

Magma is the key to the moon's makeup
For more than a century, scientists have squabbled over how the Earth's moon formed.

'Amazing snapshots' plumb volcanic depths
Research shedding light on the internal 'plumbing' of volcanoes may help scientists better understand volcanic eruptions and unrest.

Read More: Magma News and Magma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.