Existence Of "Less-Than-Whole" Electronic Charges Confirmed At The Weizmann Institute Of Science

September 23, 1997

REHOVOT, Israel - September 22, 1997 - Researchers at the Weizmann Institute of Science have provided the first unambiguous evidence that electrons can behave in an intriguing way that seems to defy common sense.

An electron is a tiny particle that carries the smallest negative charge in nature. Yet a daring theory of physics developed 15 years ago argues that under certain conditions, an electric current behaves as if it were made up of fractions of electronic charges.

In an experiment described in the September 11 issue of Nature, Weizmann Institute physicists measured fractional charges one-third that of an electron.

"Mind-boggling as this may seem, this phenomenon is real," says study author Rafael de-Picciotto. "Of course, electrons don't split into fragments in an electric current, but under certain conditions it is indeed possible to measure a charge smaller than that of an electron."

The research team that conducted this experiment included de-Picciotto, Dr. Mikhail Reznikov, Prof. Mordehai Heiblum, Dr. Vladimir Umansky, Gregori Bunin and Dr. Diana Mahalu.

Intuition vs. Reality

Ever since American physicist Robert Millikan first measured the charge of an electron 80 years ago, this value has been widely regarded as a basic unit of electric charge. Scientists have consequently come to view electrons that make up an electric current as a flow of negatively charged, indivisible "balls." A current made up of fractions of an electronic charge, therefore, would seem a counter-intuitive idea, just as it would be absurd to describe a crowd made up of "less-than-whole" people or street traffic made up of "less-than-whole" cars.

However, if electrons are always regarded as "whole," it is extremely difficult to understand and describe their behavior under certain conditions. For example, some particular instances of this behavior, as in a phenomenon known as the fractional quantum Hall effect, observed in a strong magnetic field, remain unexplained.

In 1982, physicist Robert Laughlin of the United States proposed a theory that explained this effect and provided a very simple way of describing highly complex interactions between electrons. However, this explanation came at a "cost": the theory made the bizarre assumption that an electric current can be made up of odd-denominator fractions of electronic charges - one-third, one-fifth, one-seventh, etc. - of an electron.

In the new experiment, Weizmann Institute scientists designed a sophisticated system to measure such fractional electric charges, should they exist.

The system makes it possible to measure so-called "shot noise." In day-to-day environment, this noise results from random variations in the number and velocity of electrons and causes popping sounds in radio receivers and snow effects in television pictures. Under special laboratory conditions, "shot noise" can be analyzed to reveal the make-up of the electric current. This is possible because the noise has "ripples" left by the flow of electrons in a conductor. The size of each "ripple" is proportional to the unit of electric charge: the smaller the ripple, the smaller the charge, and vice versa.

The scientists passed an electric current through a semiconductor immersed in a high magnetic field, under conditions in which the fractional quantum Hall phenomenon is observed. They used sophisticated equipment to eliminate all extraneous sources of noise. The "shot noise" made by the current was then amplified and measured. It turned out to be made of charges one-third that of an electron.

"This is a beautiful manifestation of the strength of the theoretical methods used to predict such a counter-intuitive phenomenon," says Prof. Heiblum.

The scientists' next challenge is to create conditions for the emergence of even smaller charges, one-fifth of an electron, and to measure these charges. This will require even greater refinement of the system because these tiny charges make smaller ripples that are consequently more difficult to measure.

This work was partly supported by the Israel Science Foundation and Austria's Ministry of Science, Research and Art.

The scientists are members of the Weizmann Institute's Condensed Matter Physics Department. They conducted the research at the Institute's Joseph H. and Belle Braun Center for Submicron Research.

The Weizmann Institute of Science is a major center of scientific research and graduate study located in Rehovot, Israel. Its 2,400 scientists, students and support staff are engaged in more than 850 research projects across the spectrum of contemporary science.

Weizmann Institute news releases are posted on the World Wide Web at http://www.weizmann.ac.il, and are also available at http://www.eurekalert.org.
-end-


American Committee for the Weizmann Institute of Science

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.