Neurotransmission Machinery Visualized For The First Time

September 23, 1998

The classic image of communication between brain cells shows a neurotransmitter crossing the synapse and binding to receptors on the surface of a neighboring neuron. Yet, scientists have had only a murky picture of the events within the secreting neuron that trigger the release of neurotransmitters.

Now, a group of researchers led by Axel T. Brunger, a Howard Hughes Medical Institute (HHMI) investigator at Yale University has deciphered and produced the first glimpses of the molecular machinery that propels neurotransmitters into the synapse. The key players are a family of proteins called SNAREs (Soluble NSF Attachment protein REceptor). These proteins haven't changed much through evolution; SNAREs play a similar role in the secretions of even primitive life forms like yeast.

In neurons, the merging of these mostly amorphous proteins into a highly structured and charged complex precipitates neurotransmitter release. Formation of the complex fuses vesicles -- tiny sacs carrying the neurotransmitter inside the neuron -- with the cell membrane, spewing the neurotransmitter into the synapse. Such vesicle fusion occurs millions of times daily in each of the human brain's 100 billion neurons. So understanding vesicle fusion promises to shed light on processes like learning and memory, and may lead to improved treatments for brain disorders.

"It's sort of like merging two soap bubbles into one, but hardly that simple," explained R. Bryan Sutton, an HHMI associate in Brunger's laboratory. Sutton, Brunger and their colleagues report the elucidation of the synaptic fusion complex's intricate molecular structure in the September 24, 1998, issue of Nature.

The researchers used ultra-bright x-ray radiation from a synchrotron facility funded by the U.S. Department of Energy to illuminate the tiny protein crystals and determine the shape of the complex, atom-by-atom. They then created computer reconstructions that provide clues about how this pivotal protein complex may accomplish its mission.

Within the neuron, vesicles fill up with neurotransmitters, such as dopamine or serotonin. They then travel out into the neuron's extensions (axons), where they dock at the membrane and await an electrochemical signal to merge. At this moment the SNAREs form a complex.

Like other known fusion mechanisms, such as those used by viruses to infect cells, synaptic fusion employs a protein agent to meld two membranes. But unlike viral mechanisms, in which the fusion protein simply changes its shape, the very assembly of the synaptic fusion protein itself leads to the union of vesicle and cell membrane.

This assembly likely begins when two SNARE proteins in the cell's membrane, SNAP-25 and syntaxin, join together, Brunger says. This two-part complex is then joined by a third protein from the vesicle, synaptobrevin, in a configuration that sets up electrical and chemical forces that could promote membrane fusion. In addition, highly flexible helical structures in the complex, prone to twisting and bending, could cause strains that physically deform fatty layers within the two membranes, allowing them to mix. The complex's highly grooved surface, with distinct electrically and chemically polarized regions, could also be important for fusion and for the binding of regulatory factors affecting neurotransmission, say the researchers.

"The complex may act sort of like a winch to drive the vesicle down into the neuron's membrane," said Brunger. "Diseases such as tetanus and botulism take advantage of the fusion machinery by attacking these ties between neurotransmitter-filled vesicles and the neuron's membrane, effectively cutting the winch cable and causing neurological symptoms."

Advances in knowledge about the protein complex's structure could be of potential use in designing new medications for disorders of brain function, suggests Brunger.

Howard Hughes Medical Institute

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to