Could diabetes treatments fight cancer?

September 24, 2003

Drugs that treat diabetes may also be effective against some cancers. In today's Journal of Biology, researchers at the University of Dundee report the discovery of an unexpected link between diabetes and Peutz-Jeghers syndrome, a hereditary disease that increases the risk of suffering from cancer.

The Dundee team were looking for a protein that activates AMPK, an enzyme that reduces blood glucose levels and is a target for drugs commonly used in treating Type 2 diabetes.

They hoped that this protein would be a target for new anti-diabetes drugs, and their search ended with an enzyme called LKB1. Surprisingly, a lack of LKB1 is a known cause of Peutz-Jeghers syndrome, in which the risk of developing some cancers is 15 times higher than normal.

"It was totally unexpected," said Dario Alessi, one of the research team leaders. "LKB1 was thought of as a tumour suppressor gene, and AMPK was involved in diabetes. No one thought that there could be a link between the two."

Grahame Hardie, the second team leader, said: "The idea that LKB1 might switch on AMPK came from work I did on a related system in the simple single-cell organism brewer's yeast. [...] The idea that LKB1 might be the key was a genuine 'Eureka' moment, especially when I realised that Dario Alessi already worked on it and had all of the expertise necessary to test the idea."

Having identified the LKB1 enzyme in yeast, the Dundee team looked for its counterpart in rat liver extracts that could activate AMPK. They not only identified the rat version of LKB1, but also found two proteins that bind to LKB1 and enhance its activity. When the researchers removed LKB1 from the extract, they found that the extract could no longer activate AMPK, consistent with LKB1 being the activating enzyme.

LKB1 normally acts to prevent tumour growth. The way that it does this was unclear until now, but this research suggests that its tumour-preventing properties may be dependent on its ability to activate AMPK. This would make sense as active AMPK not only reduces blood glucose levels, but can also inhibit cell division and the production of molecules required for cell growth.

Patients with Type 2 diabetes commonly have high levels of glucose in their bloodstreams. Active AMPK reduces these by inducing muscles to take up glucose from the blood, and inhibiting glucose production. Some common anti-diabetes drugs target AMPK, increasing its activity. Intriguingly, the researchers found that one such drug, metformin, the active ingredient of the glucophage medicine, was ineffective in cells that contained no LKB1. Alessi said: "It is not yet clear whether metformin directly activates LKB1, our research didn't test this. It is one of the things to find out in the future." However, he believes that drugs which activate LKB1 could be more effective at treating diabetes than current therapies.

Although metformin would be ineffective against Peutz-Jeghers syndrome, as the tumours would not have any LKB1, virtually all other tumours retain their LKB1 activity. Alessi explains: "An exciting possibility is that metformin could be used for treating some forms of cancer. Metformin is the most widely used diabetes drug in the world. It will be interesting to see if people on metformin get less cancer - the data must be out there somewhere."
-end-
This press release is based on the following article:
Complexes between the LKB1 tumor suppressor, STRADa/b and MO25 a/b are upstream kinases in the AMP-activated protein kinase cascade.
Simon A Hawley, Jérôme Boudeau, Jennifer L Reid, Kirsty J Mustard, Lina Udd, Tomi P Mäkelä, Dario R Alessi and D Grahame Hardie.
Journal of Biology 2:28
http://jbiol.com/content/2/3/28
Published 24th September 2003 16:00 GMT

Once published, this article will be freely available online, in keeping with BioMed Central's policy of open access to research articles.

Please publish the URL in any news report so that your readers will be able to read the original paper.

For further information about this research, please contact Professor Dario Alessi by email at d.r.alessi@dundee.ac.uk or by phone on 44-1382-344-241 until 17:00 GMT and 01382-644-879 after 20:30 GMT. For urgent enquiries only he may be contacted on 07801-569-658

Alternatively contact Gemma Bradley by email at press@biomedcentral.com or by phone on 44-207-323-0323 x2331.

Journal of Biology (http://jbiol.com) is published by BioMed Central (http://www.biomedcentral.com), an independent online publishing house committed to providing immediate free access to peer-reviewed biological and medical research. This commitment is based on the view that open access to research is essential to the rapid and efficient communication of science. In addition to open-access original research, BioMed Central also publishes reviews and other subscription-based content.

BioMed Central

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.