Brain transportation system defect linked to Huntington's by UCSD team

September 24, 2003

Researchers at the University of California, San Diego (UCSD) School of Medicine have linked a defective protein in Huntington's disease to gridlock in the transportation system that moves signals and vital protein cargoes within the brain, eventually leading to neuron cell death.

Published in the September 25, 2003 issue of the journal Neuron, their studies in Drosophila, the fruit fly, showed that a protein called huntingtin is critical for normal neuronal transportation. When the protein is defective, however, it appears to physically blocks traffic in the narrow axons that are the long pipes of the nerve cells.

Although defective huntingtin genes have previously been linked to Huntington's disease, this is the first study to illustrate that the defective protein may cause neuronal damage by aggregating (sticking together) and blocking axonal traffic.

"These findings support our hypothesis that blockage of neuronal transportation is related to several neurodegenerative diseases," said the study's senior author, Lawrence S.B. Goldstein, Ph.D., UCSD professor of cellular and molecular medicine and a Howard Hughes Medical Institute investigator. "In a previous studies (Nature, Dec. 6, 2001 and Neuron, Nov. 8, 2001), we provided evidence that a protein linked to plaque accumulation in Alzheimer's disease is involved in brain cellular trafficking."

In the current study, the Goldstein team removed or reduced the normal huntingtin gene in fruit fly larva. As a result, they found that vesicle traffic up and down the axon was disrupted, indicating that huntingtin's normal function was related to the transport machinery.

Next, the researchers looked at the defective, or pathogenic version of the huntingtin protein, and of other proteins that cause polyglutamine diseases, which are neurodegenerative disorders similar to Huntington's disease. They found that the disease-causing versions of all these genes inhibited the transport machinery, while non-disease versions did not.

"There may be two things going on here," Goldstein said. "The aggregates encoded by the defective genes may be physically blocking traffic in these narrow pipes, like a plumbing problem. Or, the genes may be binding to components of the machinery, interfering with their normal function."

A devastating, degenerative brain disorder with no known treatment or cure, Huntington's disease causes brain deterioration, leading to an inability to walk, talk and reason. Huntington's disease, and the lesser known polyglutamine diseases, typically begin in adulthood and progress over 10 to 30 years.
-end-
The UCSD study was supported by a grant from the National Institutes of Health. The paper's first author was Shermali Guanwardena, Ph.D., UCSD Department of Cellular and Molecular Medicine. Additional authors were Lu-Shiun Her, Ph.D., Richard G. Brusch, B.A., Ingrid R. Niesman and Louis Sintasath, B.A., UCSD Department of Cellular and Molecular Medicine; Robert A. Laymon, M.S., UCSD Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute; Beth Gordesky-Gold, Department of Biology, University of Pennsylvania; and Nancy M. Bonini, Ph.D., Howard Hughes Medical Institute and Department of Biology, University of Pennsylvania.

University of California - San Diego

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.