Bacterial 'communication system' could be used to stop and kill cancer cells, MU study finds

September 24, 2014

COLUMBIA, Mo. - Cancer, while always dangerous, truly becomes life-threatening when cancer cells begin to spread to different areas throughout the body. Now, researchers at the University of Missouri have discovered that a molecule used as a communication system by bacteria can be manipulated to prevent cancer cells from spreading. Senthil Kumar, an assistant research professor and assistant director of the Comparative Oncology and Epigenetics Laboratory at the MU College of Veterinary Medicine, says this communication system can be used to "tell" cancer cells how to act, or even to die on command.

"During an infection, bacteria release molecules which allow them to 'talk' to each other," said Kumar, the lead author of the study. "Depending on the type of molecule released, the signal will tell other bacteria to multiply, escape the immune system or even stop spreading. We found that if we introduce the 'stop spreading' bacteria molecule to cancer cells, those cells will not only stop spreading; they will begin to die as well."

In the study published in PLOS ONE, Kumar, and co-author Jeffrey Bryan, an associate professor in the MU College of Veterinary Medicine, treated human pancreatic cancer cells grown in culture with bacterial communication molecules, known as ODDHSL. After the treatment, the pancreatic cancer cells stopped multiplying, failed to migrate and began to die.

"We used pancreatic cancer cells, because those are the most robust, aggressive and hard-to-kill cancer cells that can occur in the human body," Kumar said. "To show that this molecule can not only stop the cancer cells from spreading, but actually cause them to die, is very exciting. Because this treatment shows promise in such an aggressive cancer like pancreatic cancer, we believe it could be used on other types of cancer cells and our lab is in the process of testing this treatment in other types of cancer."

Kumar says the next step in his research is to find a more efficient way to introduce the molecules to the cancer cells before animal and human testing can take place.

"Our biggest challenge right now is to find a way to introduce these molecules in an effective way," Kumar said. "At this time, we only are able to treat cancer cells with this molecule in a laboratory setting. We are now working on a better method which will allow us to treat animals with cancer to see if this therapy is truly effective. The early-stage results of this research are promising. If additional studies, including animal studies, are successful then the next step would be translating this application into clinics."
-end-


University of Missouri-Columbia

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.