Discovery of genetic differences between relapsing/non-relapsing breast cancers

September 24, 2015

Vienna, Austria: Although most patients with breast cancer are cured after treatment, in about one in five the cancer will recur, returning either to the same place as the original tumour or spreading to other parts of the body (metastasis). Now, researchers have taken an important step towards understanding why some primary breast cancers return while others do not.

They have found that the genetic factors driving the cancers that recur are different from those found in the cancers that do not. This discovery could enable doctors to identify patients at high risk of their cancer returning and to target the genes responsible for recurrence when the cancer is first diagnosed in order to prevent its return.

Presenting the results to the 2015 European Cancer Congress [1] tomorrow (Saturday), Dr Lucy Yates, MD, a clinical research oncologist from the Wellcome Trust Sanger Institute, Cambridge, will say that her team analysed data from the genetic sequencing of 1,000 breast cancer patients' tumours. In 161 cases this included samples taken from recurring tumours or metastases. They compared the cancer genes found in cancers sampled at first diagnosis (primary tumours) with those found in relapsed cancers.

They found that there were genetic differences between primary and recurring tumours, with some differences being acquired during the later phases when the cancers recurred and started to spread.

The researchers say these findings have important implications for personalised medicine. If individual cancers can change genetically over time, this means that treatments that target a particular genetic mutation, either in the clinic or in trials, may have to change as the disease progresses, guided by taking regular samples of cancer tissue, rather than basing the treatment only on samples taken when the cancer is first diagnosed.

The study is the largest and most comprehensive carried out to date, say the researchers, in terms of the number of samples from relapsed breast cancers and the 365 genes involved in cancer-related pathways that have been investigated simultaneously.

"We have found that some of the genetic mutations that drive breast cancers that relapse are relatively uncommon amongst cancers that do not relapse at the point of primary diagnosis. We believe that the differences we have seen reflect genetic differences that can predispose a cancer to return, combined with mutations acquired throughout the period from first diagnosis to the subsequent relapse. Some of these genetic alterations are potentially targetable with drugs," Dr Yates will say.

Within an individual cancer, a wide range of genetic or epigenetic [2] alterations accumulate and may constrain later events that can promote the survival of the cancer through relapse. Alternatively, specific environmental factors such as the response of the immune system, different treatments, or the environment of the metastasis itself may have an influence on the occurrence of rare cancer genes.

Among these later stage mutations, the researchers found "compelling evidence" for the tumour suppression activity of two related genes called JAK2 and STAT3 that operate within the same signalling pathway. "Within some breast cancers, a disruption in this signalling pathway seems to be advantageous for survival of the cancer," Dr Yates will say. "Interestingly, this is in contrast to the role of JAK2 in some other cancers where over-activity of the gene drives malignancy rather than suppresses it."

Enhanced JAK-STAT signalling is known to play an important role in breast cancer stem cell development and cancerous cell line survival, and pre-clinical evidence seems to suggest that inhibiting the gene would be therapeutically advantageous. These findings have led to the development of clinical trials for breast cancer using JAK inhibitors in the hope that they will slow cancer progression.

"However, our findings suggest that, in a subset of cancers, inhibiting this pathway may have the opposite effect, and this requires further investigation. In general, the observation highlights the importance of understanding the diverse nature of breast cancers in the era of precision medicine," Dr Yates will conclude.

Professor Peter Naredi, the ECCO scientific co-chair of the Congress, who was not involved in the research, commented: "Information such as that which Dr Yates will present is very important in the era of precision medicine. Not only can we better choose the right treatment combination as our information about the primary tumour increases, and hence prevent over-treating patients who will not benefit, but this will also help us select the right therapy for each breast cancer patient. This study also underlines the fact that we should consider a recurrence of a cancer as a new event, and carefully select the right treatment for the recurrent tumour as opposed to just relying on information from the first occurrence."

ESMO spokesperson, Dr Jorge Reis-Filho, from the Memorial Sloan Kettering Cancer Center, New York, USA, who was not involved in the research, said: "This study highlights the differences between genetic alterations that drive relapsed and metastatic disease as opposed to primary breast cancers, and underlines the importance of analysing the genetic features of metastases when making treatment decisions. The extent of the differences in the repertoire of mutations among different metastatic sites within individual patients remains to be determined, however, as does the best way to obtain tumour-derived genetic material in patients with metastatic disease. We also need to know more about whether a single or multiple metastatic sites should be analysed in this context."
-end-
Abstract no 1804. "The driver landscape of breast cancer metastasis and relapse". Breast cancer - advanced disease proffered papers session, 10.30-12.20 hrs (CEST), Saturday 26 September, Hall D1 (presenting at 11.40 hrs).

[1] The European Cancer Congress is the 18th congress of the European CanCer Organisation (ECCO) and the 40th congress of the European Society for Medical Oncology (ESMO).
[2] Related to the switching on and off of genes.
[3] The work was funded by The Wellcome Trust.

ECCO-the European CanCer Organisation

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.