Nav: Home

A new way to count qubits

September 24, 2018

Researchers at Syracuse University, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.

Their findings are the subject of an article in Science magazine (American Association for the Advancement of Science, 2018), which elaborates on the experimental efforts involved with creating such a technique.

The Plourde Group--led by Britton Plourde, professor of physics in Syracuse's College of Arts and Sciences (A&S)--specializes in the fabrication of superconducting devices and their measurement at low temperatures.

Much of their work involves qubits, which are systems that follow the strange laws of quantum mechanics. These laws enable qubits to exist in superpositions of their two states (zero and one), in contrast to digital bits in conventional computers that exist in a single state.

Plourde says that superposition, when combined with entanglement ("another counterintuitive aspect of quantum mechanics"), leads to the possibility of quantum algorithms with myriad applications.

"These algorithms can tackle certain problems that are impossible to solve on today's most powerful supercomputers," he explains. "Potential areas impacted by quantum information processing include pharmaceutical development, materials science and cryptography."

Intensive, ongoing industrial-scale efforts by teams at Google and IBM have recently led to quantum processors with approximately 50 qubits. These qubits consist of superconducting microwave circuits cooled to temperatures near absolute zero.

Building a quantum computer powerful enough to tackle important problems, however, will require at least several hundreds of qubits--likely many more, Plourde says.

The current state-of-the-art approach to measuring qubits involves low-noise cryogenic amplifiers and substantial room-temperature microwave hardware and electronics, all of which are difficult to scale up to significantly larger qubit arrays. The approach outlined in Science takes a different tack.

"We focus on detecting microwave photons," says Plourde, also editor-in-chief of IEEE Transactions on Applied Superconductivity (Institute of Electrical and Electronics Engineers). "Our approach replaces the need for a cryogenic amplifier, and could be extended, in a straightforward way, toward eliminating much of the required room-temperature hardware, as well."

Plourde says the technique co-developed at Syracuse and UW-Madison could eventually allow for scaling to quantum processors with millions of qubits. This process is the subject of a previous article by Plourde and his collaborators in Quantum Science and Technology (IOP Publishing, 2018).
-end-
An A&S faculty member since 2005, Plourde is a recipient of the IBM Faculty Award and the National Science Foundation's CAREER Award. He earned a Ph.D. in physics from the University of Illinois Urbana-Champaign, and completed a postdoctoral research fellowship at the University of California, Berkeley.

Syracuse University

Related Quantum Computer Articles:

Johns Hopkins researchers discover material that could someday power quantum computer
Quantum computers with the ability to perform complex calculations, encrypt data more securely and more quickly predict the spread of viruses, may be within closer reach thanks to a new discovery by Johns Hopkins researchers.
New research brings scientists one step closer to a fully functioning quantum computer
Quantum computing has the potential to revolutionize technology, medicine, and science by providing faster and more efficient processors, sensors, and communication devices.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
More Quantum Computer News and Quantum Computer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...