New earthquake risk model could better inform disaster planning

September 24, 2018

Researchers have developed a new way to model seismic risk, which they hope will better inform disaster risk reduction planning in earthquake-prone areas.

The study, which is published in Proceedings of the National Academy of Sciences today (Monday 24 September 2018), and was led by academics from Durham University's Department of Geography, has developed a methodology that assesses seismic risk by looking at multiple earthquake scenarios and identifying impacts that are common to multiple scenarios.

This approach, which the team calls 'ensemble modelling', allows the researchers to estimate whether particular impacts are specific to certain earthquakes, or occur irrespective of the location or magnitude of an earthquake.

The team hopes that this method will provide contingency planners with a more complete picture of earthquake risk and potentially help guide the use of limited resources available for earthquake risk reduction.

The ensemble modelling method is novel as it goes beyond the standard probabilistic (identifying all possible earthquake scenarios at a given site) and deterministic (worst-case-event) approaches, focusing instead on the impacts of multiple possible earthquake scenarios.

Dr Tom Robinson, Durham University Department of Geography, said: "Earthquakes remain one of the deadliest natural hazards in the world and are a significant planning challenge for governments and aid agencies.

"Traditional assessments of seismic risk focus primarily on improving understanding of earthquake hazard, in terms of potential ground shaking but for contingency planning, it is the potential impacts of an earthquake that are of more importance.

"Our method provides critical information on the likelihood, and probable scale, of impacts in future earthquakes. We hope this can help better inform how governments and aid agencies direct limited disaster mitigation resources, for example how they distribute resources geographically."

The research team hope that the ensemble modelling method will help planners to better understand where risks are greater, for example because of the relative vulnerability of communities, or their location in relation to identified likely earthquake impacts, and direct resources in a more targeted, informed way.

As part of their study the research team worked with colleagues at Nepal's National Society of Earthquake Technology to use Nepal as a case study for their modelling approach.

Together the team modelled fatalities from 90 different scenario earthquakes and established whether or not the impacts where specific to a certain scenario.

Dr Robinson said: "The results showed that for most districts in Nepal similar impacts occurred irrespective of the scenario earthquake and that impacts were typically closer to the minimum rather than the worst-case scenario.

"This suggests that planning for the worst-case scenario in Nepal may place an unnecessarily large burden on the limited resources available.

"Our results also showed that the most at-risk districts are predominantly in rural western Nepal and that there are around 9.5 million Nepalese people who live in districts that are at a higher seismic risk than the capital, Kathmandu.

"Disaster risk reduction planning therefore needs to focus on rural, as well as urban, communities, as our modelling shows they are at higher risk."

The results of the case study allow the team to demonstrate that a sole planning focus on urban earthquake risk in Kathmandu could be inappropriate, as many rural populations within Nepal are at greater relative risk.

However, the new modelling approach is not only relevant to Nepal and can be applied anywhere, to help inform earthquake disaster risk reduction planning.
-end-
The team is currently working to apply the model to other areas of seismic risk across South East Asia and hope to be able to partner humanitarian agencies to inform their work.

Funding for this project was provided by the European Union's Seventh Framework Programme (the DIFeREns 2 COFUND scheme), the Addison Wheeler Fellowship at Durham University and the Earthquakes without Frontiers project within the NERC-ESRC Increasing Resilience to Natural Hazards Programme.

Durham University

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.