New technique to improve ductility of ceramic materials for missiles, engines

September 24, 2019

WEST LAFAYETTE, Ind. - Something as simple as an electric field could soon make wartime missiles or drinking mugs easier to produce and more resilient for fracture.

Items such as drinking mugs, missile heads, thermal barrier coatings on engine blades, auto parts, electronic and optic components are commonly made with ceramics.

The ceramics are mechanically strong, but tend to fracture suddenly when just slightly strained under a load unless exposed to high temperatures.

Purdue University researchers have developed a new process to help overcome the brittle nature of ceramics and make it more ductile and durable. The Purdue team calls the process "flash sintering," which adds an electric field to the conventional sintering process used to form bulk components from ceramics.

"We have been able to show that even at room temperatures, ceramics sintered with the electric field surprisingly deform plastically before fracture when compressed at high strain," said Haiyan Wang, the Basil S. Turner Professor of Engineering in Purdue's College of Engineering.

A study published in Science Advances demonstrates that applying an electric field to the formation of ceramics makes the material almost as easily reshaped as metal at room temperature. The Purdue team specifically applied its technique to titanium dioxide, a widely used white pigment.

"Nanotwins have been introduced in various metallic materials to improve strength and ductility. However, there are little prior studies that show nanotwins and stacking faults can significantly improve the plasticity of ceramics," said Jin Li, a postdoctoral fellow and researcher on the research team.

The significantly enhanced room temperature ductility in titanium dioxide is attributed to the unusually high-density defects, such as stacking faults, twins and dislocations, formed through the flash sintering process.

"The existence of these defects remove the need for defect nucleation in ceramics, which typically requires a large nucleation stress, greater than the fracture stress of ceramics," Wang said.

Li, the first author of the article from Purdue, said, "Our results are important because they open the door for using many different ceramics in new ways that can provide more flexibility and durability to sustain heavy loads and high temperatures without catastrophic brittle failure."

Improved plasticity for ceramics means more mechanical durability during operation at relatively low temperatures. The sample also could withstand almost as much compression strain as some metals do before cracks started to appear.

"These ductile ceramics find many technologically important applications," said Xinghang Zhang, professor of materials engineering and co-principle investigator on the research team. "It can be applied to defense operations, automobile manufacturing, nuclear reactor components and sustainable energy devices."
-end-
This Purdue-led research is supported by the Office of Naval Research in collaboration with the University of California, Davis, Rutgers University and Naval Research Laboratory.

Their work aligns with Purdue's Giant Leaps celebration of the global advancements in sustainability as part of Purdue's 150th anniversary. Sustainability is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

The research team is working with the Purdue Research Foundation Office of Technology Commercialization to patent their work. They are looking for partners for continued research. For more information on licensing and other opportunities, contact D.H.R. Sarma from OTC at dhrsarma@prf.org.

About Purdue Research Foundation Office of Technology Commercialization

The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities through commercializing, licensing and protecting Purdue intellectual property. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at otcip@prf.org. For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at foundry@prf.org.The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.

Writer: Chris Adam, 765-588-3341, cladam@prf.org

Sources: Haiyan Wang, hwang00@purdue.edu

Xinghang Zhang, xzhang98@purdue.edu

Purdue University

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.