Nav: Home

Evolution experiment: Specific immune response of beetles adapts to bacteria

September 24, 2019

When the immune system fends off pathogens, this can happen in a very wide variety of ways. For example, the immune system's memory is able to distinguish a foreign protein with which the organism has already come into contact from another and to react with a corresponding antibody. Researchers have now investigated experimentally whether this ability of the immune system to specifically fend off pathogens can adapt in the course of evolution. To this end, they studied many successive generations of flour beetles - because insects can also specifically repel pathogens to a certain degree.

After the researchers repeatedly confronted the insects and their progeny with bacteria, they observed that the beetles' immune system reacted more strongly after just a few generations. "Our study helps us to understand whether an immune system's specificity ability can adapt quickly to the conditions of repeated confrontation with pathogens," says Prof. Joachim Kurtz from Münster University, who is heading the study.

The results might be able to help provide a better understanding of molecular processes that play a role in the innate immune memory in humans and that could perhaps be used for medical purposes. As insects are well suited for experimental evolution, the information thus acquired could usefully complement existing knowledge on the immune system of mammals. The study has been published in the journal "PNAS" (Proceedings of the National Academy of Sciences).

Background and method:

The immune system in human beings consists of two main systems - the innate immune system and the adaptive one. The latter is the part which primarily "remembers" pathogens and can react specifically. Insects have a different immune system, but researchers have already been able to show that insects too are able to show a greater reaction to infections as a result of previous experience with pathogens. However, it has not yet been investigated whether this immunological specificity can adapt evolutionarily to the respective bacterial environment.

For their experiment, the evolutionary biologists collected data from more than 48,000 red flour beetles over a period of three years. They divided the beetles into different groups in order to expose them to different combinations of six different bacterial species in each case in the larval stage first killed and then living bacteria. In some of the groups, the researchers used the same bacteria within one generation; in the other groups they confronted the beetles with a variety of different bacteria. 14 generations and three years later, they produced the results of the experiment: beetles which had been exposed to the same type of bacteria for "vaccination" and infection had developed a higher specificity over generations. This helped the beetles especially whenever they had to defend themselves against Bacillus thuringiensis, a natural insect pathogen.

The increased specificity was demonstrated by the fact that after "vaccination" with this natural pathogen, a greater activation of certain genes could be detected which play a role for the immune system and metabolism. At the same time, the survival chances of the beetles rose after being infected with the bacterium - in contrast to beetles that had evolved towards a low specificity. "This means that for certain bacteria a high specificity can develop quickly during evolution - probably caused by changes in the immune genes," say the lead authors, Dr. Kevin Ferro and Dr. Robert Peuß, who carried out the experiments as part of their PhDs at the Institute of Evolution and Biodiversity at Münster University. It was noticeable, however, that this change did not occur in all bacteria used in the experiment. One possible explanation for this might be the limited opportunities of insects to recognize and combat various antigens.

Relevance and prospects:

The molecular mechanisms identified in this experiment could be relevant for humans - in so-called 'trained immunity', a possibility being discussed in medicine for training the memory not only of the acquired, but also of the innate part of the immune system. Based on the newly acquired genetic data, the researchers want to take a more precise look at the immune memory of insects and "deactivate" the relevant genes using molecular-biological methods. In future, the researchers also want to examine the bacteria to see whether for example they develop faster when their host is prepared for them. As flour beetles are seen as a pest in food production, among others, the researchers' results could help to find a new strategy to combat them.
-end-
In addition to the University of Münster, those involved in the study were the University of Kiel, the Max Planck Institute of Evolutionary Biology in Plön, the University of Arizona and the Stowers Institute for Medical Research in Kansas City.

Original publication:

K. Ferro & R. Peuß et al. (2019): Experimental evolution of immunological specificity. PNAS; DOI: 10.1073/pnas.1904828116

University of Münster

Related Immune System Articles:

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.