Quantum destabilization of a water sandwich

September 24, 2019

From raindrops rolling off the waxy surface of a waterlily leaf, to the efficiency of desalination membranes, interactions between water molecules and water-repellent "hydrophobic" surfaces are all around us. The interplay becomes even more intriguing when a thin water layer becomes sandwiched between two hydrophobic surfaces, KAUST researchers have shown.

In the early 1980s, researchers first noted an unexpected effect when two hydrophobic surfaces were slowly brought together in water. "At some point, the two surfaces would suddenly jump into contact--like two magnets being brought together," says Himanshu Mishra from KAUST's Water Desalination and Reuse Center. Mishra's lab investigates water at all length scales, from reducing water consumption in agriculture, to the properties of individual water molecules.

Researchers were unable to explain the phenomenon at the molecular level, so in 2016, Mishra organized a KAUST conference on the subject. "We brought together leaders in the field--experimentalists and theorists--leading to intense debates on the understanding of hydrophobic surface forces," he says.

Part of the challenge was that the hydrophobic interaction is unique to water. "Gaining insights through other liquids or adding cosolvents to water is not feasible: the interaction is dramatically reduced or lost," explains Buddha Shrestha, a postdoctoral researcher in Mishra's lab.

Inspired by the conference, Mishra came up with the idea of comparing ordinary water with "heavy water," in which the hydrogen atoms are replaced by a heavier hydrogen isotope called deuterium.

"Our surface force measurements revealed that the attractive force was always approximately 10 percent higher in H2O than in D2O," says Sreekiran Pillai, a Ph.D. student in Mishra's lab. Collaborating with Tod Pascal at University of California San Diego, the team came up with an explanation.

The smaller an object, the less strictly it is governed by the laws of classical physics and the more it is subject to quantum effects. The tiny hydrogen atom is a quantum object--sometimes behaving like a particle, sometimes more like a wave. Deuterium, twice as heavy as hydrogen, is less subject to quantum effects. The consequence is that D2O is less destabilized than H2O when squeezed between two hydrophobic surfaces and the hydrogen bonds between water molecules get broken.

The discovery may have practical implications, Mishra says. "For example, these findings might aid the development of nanofluidic platforms for molecular separation."

"This is very impressive work that shows how quantum nuclear effects in water become substantial on the nanoscale," explains Professor Mischa Bonn, director of the Max Planck Institute for Polymer Research. "The results illustrate that there is still much to learn about water at the fundamental level, yet with direct relevance to nanoscale-confined water in, for instance, nanopores used for water purification and desalination."

King Abdullah University of Science & Technology (KAUST)

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.