Nav: Home

Tapeworms need to keep their head to regenerate

September 24, 2019

Scientists have identified the stem cells that allow tapeworms to regenerate and found that their location in proximity to the head is essential, according to a new study in eLife.

These novel insights can help explain how tapeworms grow in their human and animal hosts and could be helpful in finding new ways to target these parasites.

Tapeworms are famous for the enormous lengths they reach and their ability to grow thousands of segments, called proglottids. During their normal life cycle, they shed large parts of their body and then regenerate to maintain a certain length. However, it has never been fully understood how they achieve this.

"We know that tapeworm regeneration is likely to involve stem cells, but up until now their potential to regenerate has never been comprehensively studied," explains lead author Tania Rozario of the Morgridge Institute for Research at the University of Wisconsin-Madison, US. "In this study, we explored which parts of the tapeworm are able to regenerate and how this regeneration is driven by stem cells."

The team used a toolbox of molecular techniques to answer these questions. First, they removed certain fragments of the worms and then grew them in the lab to determine which regions of the body can regenerate. This showed that neither the head nor posterior body alone can regenerate and that the neck portion is needed. Astonishingly, severing the head from the neck did not stop the tapeworm from continuing to grow, but the regeneration of new segments was inhibited. Only when the tapeworm head and neck were left intact could the tapeworm continuously regenerate segments.

Next, they tested whether the neck contains special stem cells that allow tapeworms to regenerate. They labelled rapidly multiplying cells in the worms and then studied their location in the body. They found that these cells exist throughout the whole body and not just in the neck. Further studies also revealed no evidence for stem cells that are unique to the neck.

These findings led the team to speculate that stem cells are found throughout the tapeworm but that signals only operating in the neck are necessary to activate them. To test this, they administered irradiated tapeworms (that would be destined to die) with donor cells from different parts of a healthy worm. These donor cells rescued the worms and allowed them to regenerate. When stem cells were removed from the donor cells, this rescue could not occur.

This proves that the rapidly growing cells identified in the study are bona fide stem cells that can establish and regenerate within another host worm. Moreover, stem cells from any part of the body could rescue the injured worms, which suggests that external factors, rather than features of stem cells in the neck, allow regeneration to occur.

"It appears that in tapeworms, location matters enormously," concludes senior author Phillip Newmark, Howard Hughes Medical Institute Investigator at the Morgridge Institute for Research. "The head and neck environments provide cues that control the ability of stem cells to regenerate segments, even though the stem cells involved in this process are not confined to either one of these areas of the body."
-end-
Reference

The paper 'Region-specific regulation of stem cell-driven regeneration in tapeworms' can be freely accessed online at https://doi.org/10.7554/eLife.48958. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Developmental Biology, and Microbiology and Infectious Disease, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org.

To read the latest Developmental Biology research published in eLife, visit https://elifesciences.org/subjects/developmental-biology.

And for the latest in Microbiology and Infectious disease, see https://elifesciences.org/subjects/microbiology-infectious-disease.

eLife

Related Stem Cells Articles:

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.