Sky islands and tropical alpine sunflowers at risk of disappearing

September 24, 2020

As temperatures rise around the world, many species may escape the heat by migrating to higher elevations. But what will happen to those species that are already as high as there is to go?

A new study in Frontiers in Ecology and Evolution is among the first to predict the vulnerability of ecosystems in the Andes to both climate change and human activities. The researchers focused on biodiversity hotspots, called Páramos, and the most diverse plant species of these ecosystems---relatives of the sunflower in the genus Espeletia. The researchers' models predict that these habitats will shrink substantially in the next 30 years without conservation efforts. Beyond this potential loss of biodiversity, this is likely to negatively impact the human populations that rely on these ecosystems as well.

"Páramos are one of the fastest evolving biodiversity hotspots on earth and they are one of the most threatened," says co-leading author Dr Andrés Cortés, of the Colombian Corporation for Agricultural Research, together with Dr Santiago Madriñán, who is an expert on Páramos at the Universidad de los Andes in Colombia. "Páramos are also the main water supplier of wetland ecosystems and densely populated areas, hence, disregarding the future of the Páramos may jeopardize overall food and water safety in the northern Andes."

Páramos, or "sky islands," are tropical high elevation ecosystems that are above the tree line, ca. 2,800 - 5,000 m above sea level, but that are still below the permanently frozen mountaintops. Over a few millions of years, the species that inhabit these areas have adapted to extreme variations in temperature, water availability and sunlight exposure.

As a result of these conditions, there are now over 3,000 plant species throughout the South American Páramos and these areas continue to be among the fastest evolving ecosystems in the world. But scientists are only beginning to understand whether these species can evolve fast enough to keep up with climate change.

The team selected Espeletia as a representative genus because it is one of the most diverse and successful plant genera endemic to the Páramos, as well as iconic with its unbranched trunk topped with a rosette of leaves. The researchers used the most up-to-date computer modelling to predict what the distribution of 28 species of Espeletia would look like in 2050.

By adding in other factors such as nature reserves, surrounding forests, population density, agriculture and mining, the researchers found that some Páramos were particularly vulnerable and they also confirmed the limited opportunities for Espeletia species to migrate or adapt. Future work is needed to understand the role of microhabitats and other species, but these findings highlight the importance of protecting these areas.

"We hope that our findings might assist future conservation efforts, such as promoting more sustainable land uses by empowering local communities and developing ecotourism, which are also essential to relieve human impact on tropical-alpine plant diversity in the northern Andes," says the team. "In the most pessimistic scenario, if Espeletia and Páramos were lost forever, science would lose an underexplored laboratory to study evolution happening at incredible rates -- it would be just as if The Galápagos Islands disappeared."


Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to