Choanozoan and picozoan marine protists are probably virus eaters - study

September 24, 2020

Viruses occur in astronomic numbers everywhere on Earth, from the atmosphere to the deepest ocean. Surprisingly, considering the abundance and nutrient-richness of viruses, no organisms are known to use them as food. In Frontiers in Microbiology, researchers publish the first compelling evidence that two groups of ecologically important marine protists, choanozoans and picozoans, are virus eaters, catching their "prey" through phagocytosis (i.e. engulfing).

"Our data show that many protist cells contain DNA of a wide variety of non-infectious viruses but not bacteria, strong evidence that they are feeding on viruses rather than on bacteria. That came as a big surprise, as these findings go against the currently predominant views of the role of viruses and protists in the marine food webs," says corresponding author Dr Ramunas Stepanauskas, Director of the Single Cell Genomics Center at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine, USA.

Stepanauskas and colleagues sampled surface seawater from two sites: the Northwestern Atlantic in the Gulf of Maine, USA in July 2009, and the Mediterranean off Catalonia, Spain in January and July 2016. They used modern single-cell genomics tools to sequence the total DNA from 1,698 individual protists in the water. Each of the resulting Single Amplified Genomes (SAGs) consists of the genome of a single protist, with or without associated DNA: for example, from symbionts, ingested prey, or viruses or bacteria sticking to its exterior. The technique is very sensitive, but doesn't directly show the type of relationship between a protist and its associates.

The researchers found a range of protists including alveolates, stramenopiles, chlorophytes, cercozoans, picozoans, and choanozoans. Nineteen percent of SAGs from the Gulf of Maine and 48% of those from the Mediterranean were associated with bacterial DNA, suggesting that these protists had eaten bacteria. More common were viral sequences, found in 51% of SAGs from the Gulf of Maine and 35% of those from the Mediterranean, with a frequency of 1-52 virus types per protist. Most were from viruses known to infect bacteria - presumably representing parasites of the protists' bacterial prey.

But choanozoans and picozoans, which only occurred in the Gulf of Maine sample, were different. These groups, neither of which have chloroplasts, are poorly known. Choanozoans (3-10 μm; also known as choanoflagellates), are of great evolutionary interest as the closest living relatives of animals and fungi. The tiny (up to 3 μ) picozoans were first discovered twenty years ago and originally known as picobiliphytes. Until now, their food sources were a puzzle, as their feeding apparatus is too small for bacteria - but ample for viruses, most of which are smaller than 150 nm.

Every single one of the choanozoan and picozoan SAGs were associated with viral sequences from bacteriophages and CRESS-DNA viruses, but mostly without any bacterial DNA, while the same sequences were found across a great diversity of species.

"It is very unlikely that these viruses are capable of infecting all the protists in which they were found," says Dr Julia Brown, a researcher at the Bigelow Laboratory for Ocean Sciences and coauthor on the study.

The authors conclude that choanozoans and picozoans probably routinely eat viruses.

"Viruses are rich in phosphorus and nitrogen, and could potentially be a good supplement to a carbon-rich diet that might include cellular prey or carbon-rich marine colloids," says Brown. "The removal of viruses from the water may reduce the number of viruses available to infect other organisms, while also shuttling the organic carbon within virus particles higher up the food chain. Future research might consider whether protists that consume viruses accumulate DNA sequences from their viral prey within their own genomes, or consider how they might protect themselves from infection."


Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to