Genetic variation unlikely to influence COVID-19 morbidity and mortality

September 24, 2020

A comprehensive search of genetic variation databases has revealed no significant differences across populations and ethnic groups in seven genes associated with viral entry of SARS-CoV-2.

African Americans and Latinos in the United States and ethnic minorities in the United Kingdom are disproportionately affected by COVID-19. They are more likely to develop severe symptoms and also show significantly higher mortality compared with other regional and ethnic groups.

To investigate if this disparity could be caused by genetic variation, a team of three researchers - including Assistant Professor Ji-Won Lee of Hokkaido University's Graduate School of Dental Medicine - surveyed publicly available databases of genomic variants, including gnomAD, the Korean Reference Genome Database, TogoVar (a Japanese genetic variation database) and the 1000 Genomes Project. They studied variants across multiple regional and ethnic groups in seven genes known to play roles in viral entry into host cells and recognition of viral RNA in host cells.

SARS-CoV-2 has spiked protein (S protein) on its envelope, which encloses the virus. Before the virus can enter host cells, the S protein has to bind with the ACE2 receptor on the cell surface. It is then broken into two pieces by the enzymes TMPRSS2 and cathepsin B and L. After the virus enters the cells, the viral RNA binds with proteins such as TLR3, TLR7 and TLR8, triggering an innate immune response.

According to the results, there were genetic variants in these seven proteins, with the largest number of variants in ACE2. However, very few of these variations alter the functions of these proteins. Since the overall variation frequency was extremely low (less than 0.01 percent), the scientists determined there is no significant difference across populations or ethnic groups in the functions of the seven proteins involved in infection.

The team's findings suggest that differences in morbidity and mortality are not the result of genetic variations in genes for viral entry across populations. Rather, it is more likely that preexisting medical conditions, individual medical histories, environmental factors and healthcare disparities play a significant role in affecting the morbidity and mortality of COVID-19. However, due to the limited size of the population databases used in this study, additional research using more diverse human genome databases is required. Additionally, other studies have shown that genetic factors may contribute to serious cases.
Also taking part in the study were In-Hee Lee of Boston Children's Hospital (Computational Health Informatics Program) and Sek Won Kong of Harvard Medical School (Department of Pediatrics). The team's findings were published online on August 25, 2020, in the medical journal Infection, Genetics and Evolution.

Hokkaido University

Related Mortality Articles from Brightsurf:

Being in treatment with statins reduces COVID-19 mortality by 22% to 25%
A research by the Universitat Rovira i Virgili (URV) and Pere Virgili Institut (IISPV) led by LluĂ­s Masana has found that people who are being treated with statins have a 22% to 25% lower risk of dying from COVID-19.

Mortality rate higher for US rural residents
A recent study by Syracuse University sociology professor Shannon Monnat shows that mortality rates are higher for U.S. working-age residents who live in rural areas instead of metro areas, and the gap is getting wider.

COVID-19, excess all-cause mortality in US, 18 comparison countries
COVID-19 deaths and excess all-cause mortality in the U.S. are compared with 18 countries with diverse COVID-19 responses in this study.

New analysis shows hydroxychloroquine does not lower mortality in COVID-19 patients, and is associated with increased mortality when combined with the antibiotic azithromycin
A new meta-analysis of published studies into the drug hydroxychloroquine shows that it does not lower mortality in COVID-19 patients, and using it combined with the antibiotic azithromycin is associated with a 27% increased mortality.

Hydroxychloroquine reduces in-hospital COVID-19 mortality
An Italian observational study contributes to the ongoing debate regarding the use of hydroxychloroquine in the current pandemic.

What's the best way to estimate and track COVID-19 mortality?
When used correctly, the symptomatic case fatality ratio (sCFR) and the infection fatality ratio (IFR) are better measures by which to monitor COVID-19 epidemics than the commonly reported case fatality ratio (CFR), according to a new study published this week in PLOS Medicine by Anthony Hauser of the University of Bern, Switzerland, and colleagues.

COVID-19: Bacteriophage could decrease mortality
Bacteriophage can reduce bacterial growth in the lungs, limiting fluid build-up.

COPD and smoking associated with higher COVID-19 mortality
Current smokers and people with chronic obstructive pulmonary disease (COPD) have an increased risk of severe complications and higher mortality with COVID-19 infection, according to a new study published May 11, 2020 in the open-access journal PLOS ONE by Jaber Alqahtani of University College London, UK, and colleagues.

Highest mortality risks for poor and unemployed
Large dataset shows that income, work status and education have a clear influence on mortality in Germany.

Addressing causes of mortality in Zambia
Despite the fact that people in sub-Saharan Africa are now living longer than they did two decades ago, their average life expectancy remains below that of the rest of the world population.

Read More: Mortality News and Mortality Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to